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Abstract: Mixed integer programming (MIP) is an extremely versatile subclass of mathematical opti- 1

mization problems. Applications of MIP are ubiquitous in our world today, ranging from scheduling 2

to network design to production planning. Owing to its integrality constraints, MIP problems can be 3

extremely difficult to solve efficiently, especially at large scales. The standard approach in state-of-the- 4

art commercial solvers is called branch-and-cut. The branch-and-cut framework recursively reduces 5

the solution solution space by splitting the original MIP problem into subproblems (branching). At 6

each of these subproblems, cutting planes are added to further reduce the solution space (cutting). The 7

selection of these cuts is an integral part of the branch-and-cut process as high quality cuts can greatly 8

increase solving efficiency. Currently, cut selection is decided by heuristics that both require expert 9

knowledge and lack generalizability. In this paper, we propose an efficient and highly generalizable 10

cut selection scheme based on semi-supervised learning. First, we design a cut evaluation metric that 11

labels cuts based on whether they are efficient or not. Then, we train a deep learning classification 12

model with unsupervised pre-training as a ranking function for cuts. In our evaluation, the proposed 13

model outperforms standard heuristics and is comparable to existing machine learning approaches. 14

Furthermore, the model is shown to be generalizable over both problem size and problem class. 15

Keywords: machine learning; semi-supervised learning; mixed integer programming; cutting planes 16

1. Introduction 17

MIP problems are linear programming (LP) problems with integrality constraints. 18

That is, some or all of the solution variables must take integer values. This particular 19

subclass of optimization problems can be applied to a plethora of industry applications 20

including but not limited to: scheduling [1], network design [2], and production planning 21

[3]. However, due to the non-convexity of its feasible region, a characteristic enforced by its 22

integrality constraints, MIP problems are extremely difficult to solve efficiently. 23

Modern commercial MIP solvers take the branch-and-cut approach which is a com- 24

bination of the branch-and-bound technique and the cutting planes technique [4]. The 25

branch-and-bound technique recursively separates the solution space into smaller sub- 26

spaces (branches) while keeping track on the best solution found so far to eliminate future 27

branches (bounds). The cutting planes technique aims to reduce the size of a solution space 28

by adding linear inequalities (cuts) as additional constraints. The branch-and-cut method 29

applies the cutting planes technique for each branch in the branch-and-bound process. 30

However, the selection of solution variable for the branching and the selection of cuts are 31

key decisions with huge impact on the overall efficiency of the branch-and-cut algorithm 32

[4]. Currently, problem specific heuristics are used to make these decisions. These heuristics 33

are often manually designed and lack the generalizability to be deployed on a large class of 34

problems. 35

To combat the aforementioned issues, machine learning (ML) techniques have been 36

implemented to produce efficient and generalizable MIP solving techniques. Having an 37

effective cut selection algorithm is imperative to an efficient MIP solver as high quality cuts 38
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can significantly reduce the feasible set which leads to a reduction in the number of nodes 39

in the branch-and-bound search tree. With this motivation, we propose a generalizable and 40

efficient cut selection scheme for the branch-and-cut framework. This selection scheme 41

includes a cut classification system that differentiates efficient cuts from inefficient cuts and 42

a semi-supervised machine learning model that learns to do the same. 43

The key contributions of this paper can be summarized as follows: 44

• we propose a novel cut classification scheme using a multiple instance learning (MIL) 45

approach 46

• we implement a supervised classification deep learning model augmented by unsu- 47

pervised pre-training 48

• we evaluate the generalizability of our model in terms of both problem size and 49

problem class against existing heuristics and proposed ML models 50

2. Related Works 51

There are two main approaches of applying machine learning techniques to solving 52

optimization problems. The first approach aims to design a pure machine learning model 53

that solve an optimization problem in a black box style [5]. These have been shown to be 54

effective empirically but they lack theoretical guarantees. 55

The second approach, the approach that this paper has taken, aims to augment existing 56

algorithms with the integration of machine learning techniques [5]. This approach typically 57

maintains the theoretical guarantees of the existing algorithm while improving some aspects 58

of the algorithm that may be heuristic-based. 59

In particular to the branch-and-cut algorithm employed in MIP solvers, the branching 60

process and the cutting process are two key areas where machine learning techniques 61

can be implemented to improve upon human designed heuristics for higher efficiency 62

and higher generalizability. Recently, there has been a surge in interest in augmenting 63

the branch-and-cut framework with machine learning techniques, however it has been 64

mostly focused on the branching process. He et al. designed an imitation learning model 65

which can learn an adaptive node searching strategy in the branch-and-bound process that 66

performs better than modern commercial solvers on the MIP problem class [6]. Khalil et al. 67

proposed a model that learns to mimic the strong branching strategy, a time consuming 68

process that significantly reduces the size of the branch-and-bound search tree [7]. Khalil 69

et al. proposed further improvements to the branch-and-bound process by designing a 70

machine learning model that selects which node in the search tree to make progress on by 71

predicting whether or not a heuristic will succeed at a given node [8]. These works and 72

many more are detailed in Huang et al.’s survey for this research cluster [9]. 73

The cut selection process has seen less focus from researchers aiming to integrate 74

machine learning into the branch-and-cut framework. Tang et al. proposed a deep rein- 75

forcement learning (RL) formulation for intelligent adaptive cut selection for the cutting 76

planes method, a MIP solving scheme that relies purely on cuts [10]. However, this work 77

focuses purely on only one type of cuts (Gomory) and aims to reduce the total number of 78

cuts added. Paulus et al. proposed an imitation based learning model called “NeuralCut" 79

based on a lookahead expert that aims to close the integrality gap as much as possible at 80

the root node of a MIP [11]. While these two works are in the same domain as our work, 81

they have different in terms of target evaluation. The model proposed in this paper aims to 82

improve the efficiency of the branch-and-cut framework as whole and is evaluated as such 83

via run time which is different than the two aforementioned papers. 84

Huang et al. designed a multiple instance supervised machine learning model for 85

cut selection in the branch-and-cut framework called “Cut Ranking" which includes a cut 86

labelling system as well as a trained scoring function [12]. This model has been deployed 87

in an industrial setting and has outperformed the existing commercial solver by an average 88

speedup ratio of 12.42%. Huang et al.’s work is most similar to the work proposed in this 89

paper as “Cut Ranking" also aims to reduce the overall efficiency of the branch-and-cut 90

process. However, not only do we propose a different labelling system for generating 91
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labelled cut data, we also take a semi-supervised approach to the machine learning model 92

as opposed to “Cut Ranking"’s completely supervised approach. 93

Semi-supervised learning is a machine learning technique that utilizes both unlabelled 94

and labelled data. It is especially useful for scenarios where data labelling is an expensive 95

or difficult task, such as the cut labelling process in this paper [13]. The semi-supervised 96

approach taken in this paper, unsupervised pre-training (such as auto-encoders), has been 97

successfully implemented into deep neural networks since 2007 [14,15]. Details regarding 98

semi-supervised learning can be found in Erhan et al.’s survey [13]. 99

3. Cut Classification 100

For every MIP problem, and for each node of the branch-and-bound search tree, 101

existing MIP solvers can generate a set of candidate cuts. The goal of our model is to select 102

the most efficient cuts from this candidate set. In our work, the approach taken is MIL. 103

3.1. Multiple Instance Learning 104

The proposed cut classification system is based on MIL where the training data is 105

generated based on bags of instances. This approach is chosen because individual cuts will 106

have little measurable effect on the overall efficiency of the branch-and-cut framework, thus, 107

cuts are grouped into bags and are evaluated at the bag level. Then, labels are assigned at 108

the bag level. “Cut Ranking" takes the same approach for data generation [12]. 109

Consider a MIP problem P of the form: 110

max{cTx : Ax ≤ b, xj ∈ Z, ∀j ∈ NI} (1)

where c, x ∈ Rn, A ∈ Rm×n, and NI ⊆ N = {1, ..., n}. Let xLP be an optimal solution
to P’s corresponding LP relaxation and let C be the candidate cut set generated by a solver.
For each cut ci ∈ C, it is of the form:

αT
i x ≤ βi (2)

Let fci ∈ Rl denote the feature vector of ci. Let B = {B1, ..., Bk} ⊆ C be all bags of cuts 111

sampled from C. Then, the feature vector of a bag Bu, denoted by fBu , is the average of the 112

feature vectors fci for all ci ∈ Bu. That is, the feature vector of a bag of cuts is the average of 113

the feature vectors of the cuts in the bag. Furthermore, |Bu| ≥ 0.1 · |C|, ∀j ∈ {1, ..., k}. In 114

other words, the size of each sampled bag of cuts must be at least 10% of the size of the 115

candidate cut set. This is to ensure that we do not have samples with not enough cuts to 116

make a measurable difference in run time. 117

For each cut ci, the features extracted are as follows: 118

1. cut coefficients features (4): maximum, minimum, mean, and standard deviation of 119

cut coefficients αi 120

2. objective function coefficients features (4): maximum, minimum, mean, and stan- 121

dard deviation of objective function coefficients that correspond to the non-zero cut 122

coefficients 123

3. support: proportion of variables with non-zero cut coefficients to all variables 124

4. integral support: proportion of integer variables with non-zero cut coefficients to all 125

variables with non-zero cut coefficients 126

5. relative violation: violation of the cut against an optimal solution of the LP relaxation
normalized against the right hand side (if the right hand side is 0, then it is not
normalized):

αTxLP − β

|β| (3)
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6. distance: euclidean distance between an optimal solution of the LP relaxation and the
hyperplane imposed by the cut:

αTxLP − β

∥α∥ (4)

7. objective function parallelism: measure of linear dependence between the cutting
plane and the objective function:

αTc
∥α∥∥c∥ (5)

8. expected improvement: approximation of the improvement of the optimal objective
value of the LP relaxation after adding the cut:

αTxLP − β

∥α∥ · αTc
∥α∥ (6)

The first two features are basic structural data of the cut. The next two features are 127

support features of the cut with regard to the integrality constraints of the problem. The 128

rest of the features are the main metrics put forward by Wesselmann and Suhl that aim to 129

measure the quality of cuts [16]. 130

3.2. Cut Evaluation and Data Labelling 131

For each MIP problem P, after we have sampled k bags from the generated candidate 132

cut set C, every sampled bag Bu is evaluated by adding all cuts in Bu to P and running 133

the solver. To evaluate the performance of each bag, the metric used in our scheme is 134

normalized run time. Run time is chosen over other metrics such as number of cuts added 135

and number of nodes visited because our main goal is to improve the overall efficiency 136

of the cut-and-branch framework currently used in MIP solvers and run time is the most 137

accurate reflection of this. The run time recorded for each bag of cuts is normalized as some 138

MIP problems will naturally take longer to run than others due to problem size. 139

Let rj be the run time of problem P with appended bag Bj for all j ∈ {1, ..., k}. Without
loss of generality, assume Bv to be the bag with shortest run time and Bw be the bag with the
longest run time. Then, the evaluation value assigned to each sampled bag Bu, normalized
run time, is defined by:

r∗j = 1 −
rj − rm

rn − rm
(7)

In this format, for each MIP problem, the best performing bag will always be evaluated 140

as 1 and the worst performing bag will always be evaluated as 0. The rest of the bags will 141

have an evaluation of some value in [0, 1]. 142

After each bag of cuts has been evaluated, it will be given a discrete label. In our 143

scheme, we will assign 1 to bags with normalized run time over λ1 and assign 0 to bags 144

with normalized run time under λ2. λ1 and λ2 are both hyperparameters between 0 and 1 145

and λ1 > λ2. All other bags will not be labelled and consequently will not be used in the 146

supervised training portion of the model. 147

This labelling system is chosen because it is consistent over all possible distributions 148

of sample performances. Consider a naive labelling system where samples are labelled 1 149

if they are in the top 50 percentile and 0 otherwise. And consider the proposed labelling 150

system where samples are labelled 1 if their normalized run time is over 0.5 and 0 otherwise 151

(0.5 is an arbitrarily chosen threshold for this example). Consider Fig. 1 and Fig. 2 which 152

both display the sample performance distribution of the same two MIP problems taken 153

from our data set. We can see that, in Fig. 1, the naive labelling scheme is very inconsistent 154

when there are samples whose distributions are skewed towards either end of the scale. 155

Meanwhile, our proposed labelling scheme, in Fig. 2, remains consistent over all types of 156

distributions while still allowing us to control the number of positive samples by tuning 157

the hyperparameters. 158
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Figure 1. Naive labelling example

Figure 2. Proposed labelling example
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We choose allow some data points to remain unlabelled because it may be difficult 159

for the machine learning model to learn from samples with very similar performances 160

but are labelled differently. Again, consider the naive labelling system in Fig. 1, there are 161

samples with very similar run times but some are labelled 1 and some are labelled 0. The 162

machine learning model may then learn to differentiate between these two samples when 163

there may not be any meaningful difference between them, they just happened to be on 164

the threshold determined by the labelling system. Intuitively, we are labelling the samples 165

we know are good as 1 and the samples we know are bad as 0. The samples in the middle 166

that could be good or could be bad are not labelled. During our hyperparameter tuning 167

phase, we experimented with labelling all samples and found that it performs worse than 168

the proposed method. 169

4. Semi-supervised Learning Model 170

The proposed machine learning model is a semi-supervised deep learning model 171

for tabular data. The reason that unsupervised pre-training is employed in this model is 172

mainly due to the nature of the cut classification scheme described in the previous section. 173

Our proposed classification scheme only labels a portion of all generated data points (the 174

proportion of labelled to unlabelled depends on hyperparameters). Thus, we have an 175

abundance of unlabelled data at our disposal. Furthermore, the data generation process in 176

the MIP setting, while offline, is quite time extensive. Therefore, unsupervised pre-training 177

is employed to not only make use of all generated data, but also to offset the consequences 178

of having time extensive labelled data generation. The success of unsupervised pre-training 179

is well documented, especially in the case of auto-encoders, the most popular type of 180

unsupervised pre-training [13]. However, auto-encoders are more suited to settings such 181

as computer vision and voice recognition as opposed to our structured tabular data. With 182

that in mind, we implement the pre-training model used in TabNet, a deep tabular data 183

learning model [17]. TabNet’s pre-training model, similar to a denoising auto-encoder, is 184

designed to predict missing feature values from corrupted feature input based on observed 185

interdependencies.The model includes feature transformers and fully connected layers 186

at each decision step with the output as the reconstructed features. Fig. 3 is a visual 187

representation of how the unlabelled data is used in the pre-training phase. More details 188

on the unsupervised pre-training model can be found in Arık and Pfister’s paper [17]. 189

Figure 3. Unsupervised pre-training example
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Figure 4. Diagram of Model Architecture

4.1. Model Architecture 190

Figure 5. High-level diagram of the proposed cut selection scheme

Following pre-training, the data will be pushed through a supervised classification
model. The model consists of 4 fully connected layers with an input layer, an output layer,
and 2 hidden dense layers of size 64 and 32 respectively. Since the proposed model is a
binary classification model we chose to use binary cross entropy as our loss function:

− 1
N

N

∑
i=1

y log(p) + (1 − y) log(1 − p) (8)
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where N is output size, y is target value, and p is model output. For the same reasoning,
we also choose to use sigmoid as our activation function:

σ(z) =
1

1 + e−x (9)

A regression model was not chosen because, in our internal experiments, the binary 191

classification model consistently outperformed it. We hypothesize that this is due to the 192

relatively small amount of labelled data and the existence of many outliers. A multi-class 193

classification model was also tested with little success. This may be due to the classification 194

thresholds are abstract thresholds enforced by hyperparameters as opposed to actual 195

existing structural differences. For each cut, the output of model will be a continuous value 196

between [0, 1] and the top τ% of cuts will be added to the model, τ is the cut selection 197

threshold hyperparameter. A visual of our implemented architecture is given in Fig. 4. 198

To summarize the entire cut selection scheme proposed in our work, we provide both 199

a high-level diagram in Fig. 5 and a detailed algorithm description in Algorithm 1. 200
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Algorithm 1 Proposed Cut Selection Algorithm

Data Generation Phase
Input: MIP problem set
Output: labelled training set, unlabelled training set

1: for each MIP problem do
2: Do some action.
3: generate set of candidate cuts
4: sample bags of cuts from candidate cut set
5: for each bag of cuts do
6: construct features
7: evaluate run time
8: end for
9: normalize run time across all bags of cuts

10: label 1 to samples with normalized run time ≥ λ1
11: label 2 to samples with normalized run time < λ2
12: other samples remain unlabelled
13: put labelled samples into labelled training set
14: put unlabelled samples into unlabelled training set
15: end for
16: return labelled training set, unlabelled training set

Semi-supervised Learning Phase
Input: labelled training set, unlabelled training set
Output: model that scores cuts based on extracted features

1: initialize autoencoder
2: for epoch in pre-training epochs do
3: train autoencoder using unlabelled training set
4: end for
5: save weights
6: initialize deep classification model
7: load weights
8: for epoch in training epochs do
9: train model using unlabelled training set

10: loss function: binary cross entropy
11: end for
12: return model

Evaluation Phase
Input: saved model, MIP problem set
Output: run time (of each MIP problem)

1: for each MIP problem do
2: generate set of candidate cuts
3: for cut in candidate cut set do
4: construct features
5: input features into saved model and receive score in [0, 1]
6: end for
7: add top µ% of cuts to MIP problem
8: evaluate run time
9: end for

10: return run times for each MIP problem
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5. Experimentation 201

In our experimentation, the cut selection scheme is implemented only at the root node 202

of the search tree. In other words, cuts are only being added to the original MIP problem. 203

Since each node of the branching search tree can be considered its own MIP problem, we 204

believe that the results of our experimentation extends to the all nodes of the branching 205

search tree. 206

5.1. Data Sets 207

To train our model, we procured a data set consisting of 80 real-world set partitioning 208

problems from the Mixed Integer Programming Library (MIPLIB2017) [18]. Set partitioning 209

is chosen as it is one of the most widely applied mathematical optimization problems, 210

especially in the fields of transportation systems, communication systems, scheduling, 211

resource allocation, and industrial planning systems [19]. The set partitioning problem can 212

be stated as follows: for a given finite set G and a set P of n subsets Xj associated with 213

costs Cj, find a partition of G with minimum cost [19]. That is, a cost minimizing subset 214

of P where all elements are disjoint of each other and the union of the elements is G. The 215

problems in our chosen problem set are all similar in terms of difficulty as they all take 216

less than 30 minutes to solve. For each problem, 135 samples were extracted from the 217

candidate cut set which included the following types of cuts: probing, Gomory, Gomory 218

mixed integer, reduce and split, flow cover, mixed integer rounding, two-step mixed integer 219

rounding, lift and project, residual capacity, zero half, clique, odd wheel, and knapsack 220

cover [20]. After deleting duplicate cut samples, the total number of data points generated 221

for training is 10,602. 222

For comparison, we implement the follow evaluation baselines: 223

1. random: cuts are added randomly 224

2. relative violation: cuts with the highest violation relative to its right hand side are 225

added 226

3. objective function parallelism: cuts that are the closest to being parallel with the 227

objective function are added 228

4. distance: cuts that have the highest euclidean distance between an optimal solution 229

of the LP relaxation and the hyperplane imposed by the cut are added 230

5. expected improvement: cuts that have the highest approximation of objective im- 231

provement 232

6. “Cut Ranking" [12] 233

7. proposed model but without unsupervised pre-training 234

Baselines 1-5 are common heuristics for cut selection [16]. Baseline 6 is the model 235

proposed by Huang et al. that also focuses on run time [12]. Baseline 7 is to confirm the 236

effects of using unlabelled data. The work of Tang et al. and Paulus et al. are not included 237

since they are designed based on other metrics. Tang et al.’s work aims to minimize the 238

number of cuts in the cutting planes method while Paulus et al’s work aims to maximize 239

the integrality gap closed per cut added at the root node [10,11]. 240

For evaluation, we perform experiments on the following real-world data sets: 241

1. 50 small set partitioning problems (different problems than the ones used in training) 242

[18] 243

2. 50 large set partitioning problems [18] 244

3. 50 mixed integer knapsack problems [21] 245

4. 50 lot sizing problems [22] 246

5. 50 general MIP problems [18] 247

Data sets 1-2 are used to evaluate the performance of the model on similar problems 248

that it was trained on as well as how well it generalizes in terms of problem size. Data sets 249

3-5 are used to evaluate how well the model generalizes to different types of MIP problems. 250
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Problem Set
Proposed

Model
Cut Ranking

Relative

Violation
Distance Parallelism Random

Expected

Improvement

Set Partitioning (small) 0.764 0.515 0.476 0.372 0.351 0.321 0.395

Set Partitioning (large) 0.749 0.621 0.579 0.475 0.397 0.216 0.227

Mixed Integer Knapsack 0.991 0.998 0.974 0.762 0.764 0.762 0

Lot Sizing 0.795 0.698 0.667 0.197 0.740 0.773 0.205

General MIP 0.695 0.729 0.562 0.424 0.392 0.163 0.199

Table 1. Average normalized run time evaluation between proposed model, “Cut Ranking", and
various heuristics (higher is better)

5.2. Hyperparameters 251

After tuning, the hyperparameters for data generation are λ1 = 0.7 and λ2 = 0.45. 252

That is, cut samples with normalized run time over 0.7 are labelled 1 and cut samples with 253

normalized run time under 0.45 are labelled 0. With these hyperparameters, the labelled 254

samples total to 5,020 and the unlabelled samples total to 5,582. The cut selection threshold 255

hyperparameter τ is set to be 0.7, that is, the top 30% of cuts are added to the model. This 256

is consistent with all the evaluation baselines to ensure fair evaluation. 257

For model specific hyperparameters, dropout is set to be 0.01, learning rate is set to 258

be 0.0001, batch size is set to be 32, unsupervised pre-training is ran for 512 epochs, and 259

supervised training is also ran for 512 epochs. 260

5.3. Implementation 261

The MIP solver used is the Coin-or Cut-and-Branch Solver [20]. The model is imple- 262

mented in python using the Tensorflow library [23]. The hardware specifications used are 263

an Intel(R) Core i5-9400 CPU and a NVIDIA GeForce GTX 1650. 264

5.4. Results 265

Similar to the data generation phase, the evaluation metric we use to is normalized 266

run time. To reiterate the intuition of this metric, for each MIP instance, the best performing 267

algorithm (the algorithm with the lowest run time) will be evaluated as 1 and the worst 268

performing algorithm (the algorithm with the highest run time) will be evaluated as 0. The 269

rest of the algorithms will have an evaluation of some value in [0, 1] depending on where 270

they lie on the distribution of run times. Eq. 7 is the exact formula for normalized run time. 271

Then, in each of MIP data sets used in evaluation, the normalized run time of each MIP 272

instance is averaged for all the algorithms. 273

Table 1 displays the evaluation results of our proposed model compared against 274

the selected baselines. First and foremost, the proposed model significantly outperforms 275

all evaluated baselines on the data set, set partitioning (small), achieving an average 276

normalized run time of almost 50% higher than the next highest baseline. This is to be 277

expected as this is the data set that our model was trained on. 278

As for the other data sets, our proposed model is at worst comparable to both “Cut 279

Ranking", the ML model, and relative violation, the best performing heuristic. For the set 280

partitioning (large) and the lot sizing data sets, our model outperforms all of the baselines 281

by a comfortable margin. For mixed integer knapsack problems, the proposed model 282

performs slightly worse than “Cut Ranking" and slightly better than relative violation, but 283

can be considered comparable. For the general MIP data set, our model is less efficient than 284

“Cut Ranking" by a slight margin but outperforms the other baselines. 285

From the results detailed in Table 1, we can conclude that, on the data set it was trained 286

on, the proposed model performs better than existing heuristics and similar ML models. 287
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Problem Set
With

Pre-Training

Without

Pre-Training

Set Partitioning (small) 0.764 0.676

Set Partitioning (large) 0.749 0.612

Mixed Integer Knapsack 0.991 0.975

Lot Sizing 0.795 0.596

General MIP 0.695 0.612

Table 2. Average normalized run time evaluation between proposed model and proposed model
without unsupervised pre-training (higher is better)

Furthermore, it generalizes well in terms of both problem class and problem size as it is, at 288

worst, competitive with the evaluated baselines on the other data sets. 289

To confirm that the unsupervised pre-training portion of our model is indeed im- 290

proving the performance, we also evaluated our proposed model without pre-training. 291

These evaluation results are shown in Table 2. We can see that, other than the mixed 292

integer knapsack data set, our proposed model consistently performed its no pre-training 293

counterpart by a sizable margin. Even in the mixed integer knapsack data set, the proposed 294

model still performed better, though only by a slight margin. On average, the model with 295

pre-training performs around 13% higher in terms of normalized run time. Therefore, we 296

can conclude that the unsupervised pre-training portion of our proposed model is indeed 297

beneficial to the overall performance. 298

6. Conclusion 299

The backbone of modern state-of-the-art MIP solvers is the branch-and-cut framework. 300

The selection of cutting planes to be implemented at each node of the branching search 301

tree is an important task and, to tackle this, we proposed a semi-supervised deep learning 302

based cut selection scheme. In this paper, we defined a novel MIL cut classification scheme 303

that evaluates cuts based on normalized run time. Furthermore, due to the difficult and 304

expensive cut labelling process, we propose a semi-supervised deep learning model that can 305

train on both unlabelled data as well as labelled data. An unsupervised pre-training model 306

is trained to reconstruct features based on inter-feature dependencies using unlabelled data. 307

Then, the labelled data are trained upon using a standard binary classification approach. 308

Overall, we designed a machine learning model that can be used to evaluate and rank cuts 309

in a branch-and-cut framework. From our experiments on real-world MIP problem sets, 310

we found that our model outperforms existing frameworks and is comparable to other 311

proposed machine learning based approaches. Furthermore, after testing on five different 312

types of MIP problems, we found that our model is generalizable over both problem size 313

and problem class. Lastly, we confirmed that the unsupervised pre-training portion of our 314

proposed model is indeed a beneficial inclusion. 315

Due to the heuristic nature of the cut selection problem, machine learning appears 316

to be a suitable approach. However, in this problem, generating accurate evaluations of 317

cut quality can be a difficult and expensive task. In this paper, we attempted to bypass 318

that using semi-supervised learning. However, there are certainly other approaches to 319

this problem such as imitation learning and transfer learning. Furthermore, when the 320

entire branch-and-cut framework is considered as a whole, not only is the evaluation of 321

cut quality a problem, determining the quantity of cuts to be added is also an interesting 322

problem. Currently, both the branching process and the cutting process have received 323

attention from the machine learning community. However, they are often considered 324

completely separately. It can be interesting and fruitful to study the dependencies between 325

variable/node selection in the branching process and cut selection in the cutting process. 326
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