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Abstract

With the development of the novel Internet of Things (IoT) ecosystem, the dig-

ital support required by emerging applications is a highly growing area of concern.

The current network paradigm, cloud computing, is proving unable to adequately

support the ever increasing computational and storage needs of the billions of edge

devices in use. In recent years, several solutions have been put forward including two

complementary computing paradigms: Multi-access Edge Computing (MEC) and fog

computing. MEC and fog computing are both considered augments to cloud comput-

ing since they both conceptualize supplementary server layers to existing networks.

This thesis addresses the emerging challenge of efficient task scheduling in both

MEC and fog computing. Since traditional mathematical programming models are

proven to be very difficult to solve optimally at large dimensions, another approach is

needed to satisfy the time-sensitive needs of the dynamic environments of both MEC

and fog computing. In this thesis, we propose several heuristics that are designed to

provide good solutions while maintaining low complexity guarantees.

The first problem examined in this thesis is how to fully utilize parked vehicles

(PVs) as computational resources in vehicular networks under the MEC framework.

We formulate a multi-objective task offloading problem that minimizes both task

delay and wireless channel load. Then, a stable matching based heuristic is proposed
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and evaluated at various configurations of the vehicular environment.

The second problem that we examine in thesis is how to fairly allocate resources

in fog computing. Fairness in resource allocation is a highly desired quality be-

cause it not only increases the quality of service (QoS) for users but also maximizes

the resource utilization in the system. This thesis adopts the Dominant Resource

Fairness (DRF) scheme and applies it to a multi-resource, multi-server, and hetero-

geneous task environment. Furthermore, four different types of tasks are considered:

ordered/unordered, splittable/unsplittable. Finally, three different low complexity

heuristics are proposed to maximize fairness between users under the DRF scheme.
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Chapter 1

Introduction

Cloud computing is at the forefront of computing paradigms by centralizing main

computing and storage capabilities in a remote location that is accessible to all [1].

However, with the vision of the Internet of Things (IoT), we have realized that the

remote network system is simply not enough to satisfy the intensive computational

needs of the future that we envision [4] [5]. In recent years, distributed comput-

ing infrastructures have evolved at an rapid pace. With it, the sheer quantity of

computational devices that comprise the edge layer of these large scale networks is

astounding [6]. As a result, the vast amount of data produced by the edge devices

as well as the computational needs required by the edge devices have become severe

bottlenecks in large scale networks that rely on cloud computing. Several novel com-

puting paradigms have been pushed forward as solutions to this problem including

Multi-access Edge Computing (MEC) and fog computing. MEC and fog computing

are both emerging complementary computing paradigms that aim to address current

limitations in cloud computing [7].
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1.1. MEC 3

Figure 1.1: MEC Infrastructure

1.1 Multi-access Edge Computing

MEC, as an augment computing paradigm to cloud computing, extends cloud

computing services to the edge of networks through the use of base stations. As new

technological services emerge, the computational power required by edge devices are

becoming a severe bottleneck in computing networks. To counteract this, MEC aims

to provide highly responsive and low latency support to edge users by bringing com-

putation and storage resources closer to them. MEC plays an important role in the

developing Fifth Generation (5G) networks which support a variety of applications

and services where ultra-low latency communication is required. Fig. 1.1 visualizes

the infrastructure of a MEC network where there is an additional MEC layer between

the users and the central cloud. This is especially important in vehicles as the ve-

hicular environment requires incredibly low latency due to its dynamic nature [8].

Furthermore, since it is financially infeasible to mass install expensive computing

hardware into every vehicle, edge computing has become the foremost solution in

vehicular networks [9].

Jia He Sun - School of Computing



1.2. FOG COMPUTING 4

Figure 1.2: Fog Computing Infrastructure

1.2 Fog Computing

Fog computing is another complementary computing paradigm that is aimed to

handle the ever increasing computational needs of our networks. As displayed in

Fig. 1.2, fog computing is different from MEC as it introduces an intermediary layer

between the cloud layer and the edge layer named the fog layer. This fog layer is

comprised of many fog nodes that provide data processing and analysis for the edge

devices with reduced latency and increased quality as well as data filtering and load

management for the cloud layer. Overall, the implementation of the fog layer aims

to provide better service to the end devices while reducing the burden on the cloud

layer by managing data analysis and computational requests at an intermediate level.

Jia He Sun - School of Computing



1.3. THESIS OUTLINE 5

To accomplish this, part of the fog layer’s job is to receive and process compu-

tational service requests put forward by edge devices. In this infrastructure, com-

putational service requests can be observed by several fog nodes. Each request is

comprised of a set of tasks and each fog node is comprised of a set of resources. Con-

sequently, the task scheduling problem is one of the main focuses of current research

in the fog computing field and is the focus of Chapter 4 [10].

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 “Background” provides a detailed account of fundamental concepts

used in this thesis.

Chapter 3 “Multi-Objective Task Assignment Solution for Parked Vehicu-

lar Computing” examines a problem in the current development of Vehicular Edge

Computing (VEC) which is the high cost of installing enough edge servers to com-

pute all offloaded tasks at peak hours. However, it has been observed that Parked

Vehicle (PV)s are a rich reserve of underutilized computing resources and their in-

corporation into the VEC network could lead to a solution to the aforementioned

problem. Chapter 3 proposes a task offloading system with an assumed parking time

estimation mechanism. Then, a novel formulation of the task offloading problem is

presented. Finally, a matching based heuristic is proposed and evaluated at various

configurations of the VEC environment.

Chapter 4 “An Online Fair Resource Allocation Solution for Fog Com-

puting” examines a fundamental problem of fog computing which is how to allocate

the computing resources of fog nodes when scheduling tasks that arrive in an online

Jia He Sun - School of Computing



1.3. THESIS OUTLINE 6

manner. Other than task completion speed metrics, fairness of resource allocation

between competing users is also an important metric to consider. One such metric

is Dominant Resource Fairness (DRF), a fairness scheme that guarantees four key

qualities: incentivized sharing, strategy-proof, Pareto-efficiency, and envy free. This

paper examines the multi-resource, multi-server, and heterogenous task resource allo-

cation problem from a DRF perspective. Four different types of tasks are considered:

ordered/unordered, splittable/unsplittable. Three low complexity heuristics are pro-

posed to maximize fairness between users. Results show that the proposed heuristics

are at least comparable to three baseline scheduling algorithms in terms of task com-

pletion speed while achieving higher fairness between users.

Chapter 5 “Conclusion” concludes the thesis and provides current limitations as

well as future research directions.

Jia He Sun - School of Computing



Chapter 2

Background

This chapter provides the necessary background for this thesis, including overviews

on the following topics: mathematical optimization, Multi-access Edge Computing

(MEC), Vehicular Edge Computing (VEC), and fog computing.

2.1 Mathematical Optimization

Mathematical optimization is a branch of applied mathematics that is present in

many different areas such as inventory control, transportation, scheduling, networks,

finance, economics, etc. It is typically used to make decisions by analyzing models

of physical situations [11]. In general terms, an optimization problem is finding the

best solution under some set of constraints. The problems studied in this thesis are

both considered optimization problems, or more specifically, Integer Linear Problems

(ILP). The general canonical form of an ILP is comprised of three components: ob-

jective function(s), variable(s), and constraint(s) [11]. An ILP is typically represented

in the following form:

7



2.1. MATHEMATICAL OPTIMIZATION 8

minimize
x

∑
cTx (2.0.1a)

subject to

Ax ≥ b, (2.0.1b)

x ∈ {0, 1}n (2.0.1c)

The objective function that we are trying to minimize is 2.0.1a, subject to con-

straints 2.0.1b and 2.0.1c. Constraint 2.0.1b is a general form of a constraint that

depends on the problem. Constraint 2.0.1c restricts the solution variable x to be

only integers and is in every ILP. Any solution that satisfies all the constraints is

a feasible solution. The set of all such solutions is called the feasible set. Finding

the optimal solution is finding a solution x from the feasible set that produces the

minimum objective value based on 2.0.1a.

2.1.1 Scheduling

There are many different types of problems under the umbrella term optimization

problems. In this thesis, we are concerned with a specific type of ILP called scheduling

problems. Scheduling problems solve for the optimal schedule under various machine

environments and jobs characteristics [12]. Let the set of jobs be J = {J1, ..., Jn} and

the set of machines be M = {M1, ...,Mm}. A generic scheduling problem would ask

for a mapping from jobs J to machines M , subject to feasibly constraints and opti-

mization objectives [13]. There can be very many different constraints in a scheduling

Jia He Sun - School of Computing



2.2. MEC 9

problem. Some common ones are: jobs must be completed in a certain order (prece-

dence), jobs must be completed within a specific time frame (due dates), and jobs are

only available to be executed after a certain amount of time (release dates). There are

also very many different metrics that can be used as objective functions in scheduling

problems. Some common ones are: maximum completion time (makespan), number

of jobs that are completed after their due date (tardiness), and waiting time of jobs

(downtime).

2.1.2 Optimization Algorithms

The ILP model is widely studied in both academia and industry. As such, there

exist several commercial solvers that can be used to solve ILPs optimally, such as

Gurobi, CPLEX, and OSL [14] [15] [16]. However, even using these software, ILPs

are incredibly difficult to solve at large dimensions [11].

In terms of scheduling algorithms, they can be mainly classified into the follow

two categories: static scheduling and dynamic scheduling [17]. Both have their own

advantages and limitations. For example, dynamic scheduling algorithms typically

have higher performance than static algorithms but also have a lot more overhead.

Fig. 2.1 displays a more detailed taxonomy of typical task scheduling algorithms.

2.2 Mult-access Edge Computing

With significant advances in recent technology, computational power must meet

new demands. As a result, MEC, or previously known as Mobile Edge Computing,

is an emerging networking paradigm that has received a surge in interest from both

academia and the industry. MEC aims to push powerful computing and storage

Jia He Sun - School of Computing



2.3. VEC 10

Figure 2.1: Taxonomy of Scheduling Algorithms

capabilities from remote cloud servers to up close edge servers [18]. It is applicable

in many different promising technologies such as Internet of Things (IoT), virtual

reality, and smart vehicular networks [19]. Recall that Fig. 1.1 shows the typical

network infrastructure in MEC.

2.3 Vehicular Edge Computing

VEC, a subfield of MEC, has been introduced to specifically increase the com-

puting capacity of vehicular networks, an essential component for the development

of Intelligent Transportation System (ITS). VEC aims to address the lack of compu-

tational resources on board vehicles, as it is more financially feasible than the mass

installation of hardware in every vehicle and more stable than using cloud comput-

ing resources. By using edge servers, vehicles can reliably offload their computational

tasks, alleviating the heavy burden placed on the vehicles’ internal hardware. Fig. 2.2

illustrates the structure of the overall VEC system. There are three layers included

Jia He Sun - School of Computing



2.3. VEC 11

Figure 2.2: Vehicular Edge Computing (VEC) Architecture

in this model:

• The cloud layer (cloud computing servers) provides a global managerial view of

the entire network system by providing centralized control.

• The MEC layer (roadside units) comprises the edge servers that are the main

computational resources. They are responsible for receiving information and

tasks from the vehicles and, following a specified algorithm, they will process

the information and complete the tasks before sending the information back to

the vehicles.

Jia He Sun - School of Computing



2.3. VEC 12

• The user layer (vehicular devices) is mainly composed of vehicles. While they

are able to communicate with the MEC layer to offload their tasks for processing,

they are also able to communicate with other vehicles and can utilize other

vehicles’ computing/storage power for their own tasks.

Table 2.1: Comparison table: Vehicular Edge Computing vs Vehicular Cloud Com-
puting [1]

Features VEC VCC
Location At user’s proximity Remote location
Latency Low High

Mobility Support High Limited
Decision making Local Remote
Communication Real time Constraints in bandwidth
Storage capacity Limited Highly scalable
Context awareness Yes No
Device heterogeneity Highly supported Limited support
Computing capability Medium High
Cost of development Low High

As indicated in Table 2.1, VEC adopts all of the benefits of MEC and integrates

them within the existing vehicular network infrastructure. By moving computational

resources closer to the vehicles, it addresses the vehicular network’s exponentially

growing need for low latency and high bandwidth. Furthermore, VEC exceeds the

traditional MEC network with its dynamic nature. The mobility of vehicles reflects

the need for a network with an infrastructure that could support frequent movement

and rapidly changing channel environments, needs that are readily addressed by VEC

[1].

A current problem in VEC is the high cost of installing enough edge servers to

Jia He Sun - School of Computing



2.3. VEC 13

compute all offloaded tasks at peak hours. However, we have observed that Parked

Vehicle (PV)s are a rich reserve of underutilized computing resources [20]. Thus, their

incorporation into the VEC network could lead to a solution to the aforementioned

problem. Research in this area is called Parked Vehicular Computing (PVC) and is

the focus of Chapter 3.

Currently, there are five main technical issues of VEC that are currently being re-

searched: latency, scheduling, resource management, privacy and security, offloading.

The problem we examine in this thesis is under the offloading category.

2.3.1 Offloading

As mentioned previously, the edge servers will not have a large enough computa-

tional capacity to handle every single vehicle’s request. Furthermore, it is not finan-

cially realistic to implement enough roadside edge servers to be able to have the same

computational capacity as a cloud server. Thus, a computational offloading model

which allows tasks to be offloaded to another edge server or vehicle was proposed. The

main topics in offloading can be categorized as follows: mobility awareness, energy

efficiency, incentive strategy, server-based offloading, and cooperative offloading [9].

2.3.2 Stable Matching Problem

The stable matching problem, also known as the stable marriage problem, is

a model often used to solve task offloading problems. An instance of the stable

matching problem consists of two disjoint sets of equal size, the men and the women.

Each person has their own strictly ordered list of preferences that includes every

member of the opposite sex. For example, man n prefers woman m to woman m′ if

Jia He Sun - School of Computing



2.3. VEC 14

woman m precedes woman m′ on man n’s preference list. A matching is a bijection

from the elements of one set to the elements of the other. A matching is called stable

if there are no two people of the opposite sex who would both rather have each other

than their currently matched partners (a more formal definition of stability is given

in Chapter 4). The goal of this problem is to find a stable matching between the men

and the women.

A variant of the stable matching problem is the hospital-resident problem. In the

stable matching problem, each man can only be matched with one woman and vice

versa, hence, the solution is a bijection between the men and the women. However,

in the hospital-resident problem, each hospital can be matched with many residents.

Then, a solution to the hospital-resident problem is a many to one matching, where

each resident is matched to one hospital but each hospital can be matched to multiple

residents. This is also sometimes called the college acceptance problem.

In 1962, David Gale and Lloyd Shapley presented an O(n2) algorithm that solves

both the stable matching problem and the hospital-resident problem [21]. It is aptly

named the Gale-Shapley algorithm. They further proved that, in the Gale-Shapley

algorithm, for any equal number of men and women, it is always possible to find

a solution to the stable matching problem that is stable. Later, Alvin Roth and

Lloyd Shapley would apply this theory in the field of economics and win a Nobel

prize for their work on stable allocation theory and market design [22]. Today, the

algorithm used to solve the stable matching problem (and its variants) has several

names including: “the Extended Gale-Shapley algorithm”, “the Capacitated Gale-

Shapley algorithm”, “the Roth-Shapley algorithm”, and “the deferred acceptance

algorithm”.

Jia He Sun - School of Computing



2.4. FOG COMPUTING 15

2.4 Fog Computing

In recent years, distributed computing infrastructures have evolved at a rapid

pace. With it, the sheer quantity of computational devices that comprise the edge

layer of these large scale networks is astounding [23]. As a result, the vast amount

of data produced by the edge devices as well as the computational needs required

by the edge devices have become severe bottlenecks in large scale networks that

rely on cloud computing. Fog computing is one of several emerging complementary

computing paradigms that aim to address current limitations in cloud computing [7].

Recall Fig. 1.2 which displays the infrastructure of fog computing. The concept

of fog computing may sound similar to the previously discussed MEC, but there

are key differences. Within the fog layer, there exists a complex hierarchy of many

intermediate sublayers between the edge devices and the central cloud [24]. Edge

computing consists of many sublayers located near the edge of the network [25].

Finally, MEC is a single layer of nodes located at the edge of the network that

provides ultra low latency service to edge users [26]. In this sense, fog computing is

considered a superset of edge computing which is a superset of MEC. Fig. 2.3 displays

this concept.

2.4.1 Resource Allocation

A fundamental problem in fog computing is how to allocate the vast amount of

resources provided by the many fog nodes. Whenever a user submits tasks to the fog

layer, it must be given a certain amount of resources to be completed. How many

resources and on which fog node are key questions to consider.

Refer back to Fig. 2.1, resource allocation and task scheduling algorithms can be
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2.4. FOG COMPUTING 16

Figure 2.3: Fog Computing vs Edge Computing vs MEC

categorized as either static or dynamic. In static scheduling, information regarding

every incoming task are made available to the system. On the other hand, in dynamic

scheduling, the resource requirements of each task are not known until its arrival.

Due to the dynamic nature of the numerous edge devices in a fog environment, this

thesis’s focus is dynamic scheduling algorithms, more specifically, real-time scheduling

algorithms, where the tasks arrive to the system in a continuous manner. In this

thesis, we will call this online scheduling.

However, traditional resource allocation techniques cannot be applied to the emerg-

ing fog computing environment. There are many new challenges regarding resource

allocation due to the heterogeneity in hardware capabilities and heterogeneity in re-

quested tasks [27].

There are many different metrics used to evaluate resource allocation techniques.

Primarily, these metrics focus on the completion of tasks such as resource utilization,

machine/task downtime, etc [24]. However, a lesser studied area is how to allocate
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resources in a way that is fair.

2.4.2 Fairness

From a user’s perspective, their Quality of Service (QoS) is heavily associated with

their perceived fairness of the resource allocation. Unfair resource allocation can lower

the willingness of IoT users to utilize their offloading system. Fair resource allocation

can lead to very desirable attributes as well, such as no starvation of tasks, lack of

jealousy between users, and better usage of resources [28]. However, fairness is hardly

a well defined term in this regard. Is allocating an equal amount of each resource a

fair allocation? Hardly so, considering each user will have heterogeneous tasks that

require different amounts of different resources. The key to fair resource allocation

is developing an appropriate metric to evaluate fairness such that maximizing said

metric can guarantee positive attributes.

One of the most commonly used fair allocation schemes is called max-min. It

is very generalizable due to its simplicity and has attracted a lot of use in recent

years [27]. Essentially, it aims to maximize the minimum allocated share across all

users. However, it is only applicable in single resource environments which is hardly

the case in fog computing. Of course, there are also various multi-resource fairness

schemes such as Dominant Resource Fairness (DRF), Asset Fairness, and Competitive

Equilibrium from Equal Incomes (CEEI) [2]. Each of these schemes have their own

advantages and limitations and will be further discussed in Chapter 4.
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Chapter 3

A Multi-Objective Task Assignment Solution for

Parked Vehicular Computing

The main contributions of this chapter can be summarized as follows:

• To reflect the multifaceted problem of task assignment within a VEC environ-

ment, we propose a novel formulation that includes a weighted multi-objective

that aims to minimize both task delay and wireless channel load. We then prove

the NP-completeness of the problem.

• We propose a many to one stable matching based heuristic to efficiently assign

tasks to vehicles.

• We evaluate and confirm the performance of the proposed heuristic through

various simulations.

18
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3.1 Related Works

Vehicular Edge Computing (VEC) aims to use roadside edge servers to augment

the computing capacity of vehicular environments. Under this framework, smart ve-

hicles can reliably offload their computational tasks, alleviating the heavy burden

placed on the vehicles’ internal hardware. Recall that Fig. 2.2 illustrates the struc-

ture of the overall VEC system. The key advantages of VEC over Vehicular Cloud

Computing (VCC) are: low latency, mobility support, real-time communication, het-

erogeneous device support, and lower cost of development. Although it is not without

drawbacks: limited capacity and lower computing capability [1]. In terms of PVC,

there exist some challenges that should be addressed to facilitate Parked Vehicular

Computing (PVC). Firstly, scheduling computational tasks on participating Parked

Vehicle (PV)s poses an interesting challenge [29]. PVs have an inherent problem in

that they may leave unexpectedly, perhaps in the middle of a task, which results in

the system having to offload the interrupted task elsewhere, delaying it further. Sec-

ondly, the VEC network mainly communicates over wireless channels and the overuse

of such channels would cause an overload, thereby decreasing the quality of existing

communications [30].

Huang et al. [31] designed an interactive protocol with request and response oper-

ations for service provision in PVC. Then, to solve the resource scheduling problem,

they employ the Stackelberg game approach. Ge et al. [32] proposed an efficient

Schoof–Elkies–Atkin algorithm to solve the vehicle selection and task assignment

problem regarding service migration, namely, the transfer of tasks between base sta-

tions.

Wang et al. [33] implemented a system-level simulator of Long-Term Evolution
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(LTE) Sidelink Cellular Vehiclar to Everything (C-V2X) Communication for Fifth

Generation (5G). This simulation showed that the volume of data severely increased

as the number of users in the network increased. The Packet Reception Ratio (PRR)

also drastically decreased as the network size grew, reaching as low as 80.36% in a

1,920 user setting. As VEC is expected to be implemented on scales much larger than

that, it is essential to maintain the quality of communication in these settings.

However, there are currently very few works that address the potential issues of

large-scale implementation, specifically in terms of wireless communications. The

current paradigm for wireless communication in vehicular networks is C-V2X, which

has strict requirements on Quality of Service (QoS) such as high reliability and low

latency [34]. Therefore, it is necessary for VEC networks to not only provide reliable

high speed service, but also to maintain the quality of the communication channels

used.

In this chapter, we propose a many-to-one stable matching algorithm to assign

tasks to vehicles in such a way that not only minimizes task delay but also maintains

the quality of the wireless communication channels. Stable matching is chosen since

we are facing a multi-objective problem. Stable matching allows both the set of

vehicles and the set of tasks to have preference rankings over the other set which can

accurately represent both objectives of the problem.

3.2 System Model

We consider one cell which has one Base Station (BS), M users, and N PVs with

available computing resources. During high usage hours, the BS will be overloaded

and unable to complete all of the tasks offloaded to it by the users. Then, it will have
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to offload K tasks to nearby PVs. The time-slot model is adopted where the set of

tasks and PVs remain fixed within each time slot while varying across different slots.

Therefore, in each time slot we have defined the following variables (it is assumed

that this information will be available to the scheduling system):

• N = number of vehicles

• K = number of tasks

• pi = computational power offered by vehicle i

• ti = parking time estimation of vehicle i (the assumption of having knowledge

of this variable will be discussed)

• wj = computational power required for task j

• lji = task completion speed of task j if assigned to vehicle i

Regarding the parking estimation of each vehicle, statistical models are often used

to perform estimations on the parking time of vehicles in the PVC environment [32].

However, incentive mechanisms could also be involved in obtaining an estimation

of the predicted parking time. There are several existing frameworks for incentive

mechanisms in PVC that encourage the participation of PVs and select a set of PVs

for offloading. However, no existing system asks for extra information regarding each

PV’s parking time. It is possible that such information be requested as an addendum

to existing incentive mechanisms. For example, Le et al. [35] propose an auction

as the incentive mechanism for vehicle selection that minimizes social cost. Then,

a randomized auction algorithm is used to approximate the winner determination
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problem of the proposed auction. Results show that the approximation is within 5%

of the optimal value at 40 vehicles.

To summarize, the system selects N vehicles who each offer pi computational

power such that the total computational power meets a given requirement from the

BS while minimizing ci (cost incurred to vehicles). After the selection of participating

PVs, each selected PV could be requested to provide an estimate of parking time.

PVs will be further rewarded for accurate estimates on top of their reward for offering

up their computing resources using a truthful reward function where the closer the

estimate is to the actual parking time, the higher the reward will be. An example

reward function, r, would be:

Equation 3.1 Example Reward Function

r(x, y) = max(0, x− |x− y|) (3.0.1)

where x is the actual parking time and y is the submitted estimated parking time.

It is important to have estimations regarding the parking time of PVs as the

system will have a better idea of how long each selected PV will remain parked and

assign tasks accordingly. Then, at each time slot, for each available vehicle i, there

will be a known ti that is its estimated remaining parking time. If a PV leaves while

computing an offloaded task, the task is interrupted and offloaded again, to another

PV. This results in unnecessary overhead and the estimated remaining parking time

aims to reduce this by preventing computational tasks being offloaded to PVs that

are leaving soon. In short, we will assume that this information is made available to

the system, whether by statistical models, incentive mechanisms, or a combination of

the two.

To summarize the system model, the task assignment problem can be described
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as assigning K tasks to N vehicles where each task is assigned to only one vehicle,

each vehicle can be assigned multiple tasks but cannot exceed their computational

capacity, assigned tasks’ computation time should not exceed their vehicle’s estimated

parking time.

3.2.1 Problem Formulation

Now, we will formulate the task assignment problem as a weighted multi-objective

Integer Linear Problems (ILP).

minimize
x, y

α
K∑
j=1

N∑
i=1

xjilji + β
N∑
i=1

yi (3.0.2a)

subject to

N∑
i=1

xji = 1, j = 1, . . . , K, (3.0.2b)

K∑
j=1

wjxji ≤ piyi,i = 1, . . . , N, (3.0.2c)

K∑
j=1

ljixji ≤ ti, i = 1, . . . , N, (3.0.2d)

yi ∈ {0, 1} i = 1, . . . , N, (3.0.2e)

xji ∈ {0, 1} j = 1, . . . , K, i = . . . , N (3.0.2f)

Variables

The two variables in the formulated ILP are:

• xji = 1 if task j is assigned to vehicle i and 0 otherwise
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• yi = 1 if vehicle i is assigned at least one task and 0 otherwise

Constraints

The constraints can be summarized as follows:

• (2b): each task is assigned to only one vehicle.

• (2c): the assigned tasks cannot go over vehicle’s max load.

• (2d): the task for each vehicle must be able to finish before the vehicle leaves.

• (2e): yi = 1 if vehicle i is assigned a task and 0 otherwise (integrality constraint).

• (2f): xji = 1 if task j is assigned to vehicle i and 0 otherwise (integrality

constraint).

This ILP is quite difficult to solve. Following, it will be shown that this problem is

NP-Complete.

Objective

Firstly, α and β are constant objective weights. Their values decide which which

objective should be prioritized. The first objective is to minimize the task completion

time which is crucial in a VEC task assignment environment. The task completion

time consists of two parts: computation time, and transmission time (both ways). For

a particular task, its computation time, lcomp, depends on the vehicle it is assigned

to, so lcomp
ji is the amount of time it takes vehicle i to compute task j. For the

transmission time of a task, ltransji , it depends on the transmission power of the BS.
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Equation 3.2 Total Task Completion Speed

lji = lcomp
ji + ltransji (3.0.3)

Then, total task completion speed is the computation time plus the transmission time

as shown in Equation 3.2.

Practically speaking, there may be other conditions placed on the completion

speed of the tasks. For example, we may only care about completing tasks before

their individual deadlines. Or perhaps, we have to complete each task before its

deadline and as fast as possible. However, in this chapter, the only delay metric is

completion time without deadlines. The second objective is the number of vehicles

used for task assignment. This is because the deployment of tasks and any other form

of information between the VEC base station and the parked vehicles will be done

through wireless channels which are limited in size. To maintain the quality of com-

munication on these wireless channels, especially in highly populated metropolitan

areas, the number of vehicles used is also minimized.

Theorem 1. (NP-Complete) The formulated ILP is NP-Complete.

Proof. Consider the corresponding decision version of this problem. That is, givenM ,

is there a task assignment that is within the defined constraints that has an objective

value ≤M? Certificate: A certificate would be an assignment of tasks to the vehicles

denoted by the (K,N) matrix x where xji = 1 if task j is assigned to vehicle i and

0 otherwise. To verify this certificate, we would need to check that the assignment

satisfies each constraint and calculate the objective value, that is:

1. First obtain vector y from x where yi = 1 if vehicle i has a task and 0 otherwise

2. Verify each task is assigned to only 1 vehicle
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3. Verify assigned tasks do not go over vehicle’s max load

4. Verify the assigned tasks finish before the vehicle has to leave

This would take O(NK) time, which means verifying a solution is polynomial.

We will now show that bin packing reduces to the formulated ILP [36]. First set

the objective weights α = 0 and β = 1. Then, set all pi = B, where B can be any

constant. Then set all lji and ti = 0. Then the optimization problem becomes:

minimize
x, y

N∑
i=1

yi (3.0.4a)

subject to

N∑
i=1

xji = 1, j = 1, . . . , K, (3.0.4b)

K∑
j=1

wjxji ≤ Byi,i = 1, . . . , N, (3.0.4c)

yi ∈ {0, 1} i = 1, . . . , N, (3.0.4d)

xji ∈ {0, 1} j = 1, . . . , K, i = . . . , N (3.0.4e)

Notice that this is an exact formulation of the bin packing problem where wj is

the size of item j and B is the capacity of each bin. The decision bin packing problem

is known to be NP-complete. Thus, the decision version of our optimization problem

is NP-complete. Therefore, our optimization problem is NP-complete.
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3.3 Proposed Solution

The heuristic proposed is a stable matching based algorithm. The algorithm

it is based on has several names including: “Extended Gale-Shapley algorithm”,

“the Capacitated Gale-Shapley algorithm”, “the Roth-Shapley algorithm”, and “the

deferred acceptance algorithm”. Following, it will be referred to as the Roth-Shapley

(RS) algorithm [22]. The proposed heuristic is a version of the RS algorithm that is

modified to fit the dynamic nature of the PVC environment. The assignment of tasks

to vehicles can be described as a many-to-one matching.

Definition (Matching). A matching A is a mapping from the set of tasks T to the

set of vehicles V , T → V , which satisfies all of the following:

• for any task j ∈ T , |A(j)| ≤ 1

• for any task j ∈ T , and any vehicle i ∈ V , A(j) = i if and only if j ∈ A(i)

The proposed algorithm requires both sets V and T to have preference rankings

over each other. That is, for all i ∈ V , i must have a preference ranking including all

j ∈ T and vice versa.

Definition (Preference Ranking). For any vehicle i ∈ V , its preference ranking is a

list L including all tasks in T . If task j ∈ T comes before task j′ ∈ T in L, we say

that vehicle i prefers task j to task j′. For tasks in T , their preference rankings are

defined vice versa.

How these rankings are to be computed are discussed later in this section. Next,

we will define a stable matching, but first we will define two types of blocking pairs.
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Definition (Type 1 Blocking Pair). Given a matching A, (j, i) ∈ (T, V ) forms a type

1 blocking pair if all of the following conditions hold:

• task j prefers vehicle i over A(j)

• there exists task k with vehicle i ∈ A(k) such that vehicle i prefers task j to task

k and the removal of task k allows the assignment of task k onto vehicle i

The existence of a type 1 blocking pair (j, i) ∈ (T, V ) in a given matching A is

unstable since it means that task j can be assigned to a more preferred vehicle and

vehicle i can be assigned a more preferred task at the cost of a less preferred task.

Apart from the type 1 blocking pair, there is also the type 2 blocking pair.

Definition (Type 2 Blocking Pair). Given a matching A, (j, i) ∈ (T, V ) forms a type

2 blocking pair if all of the following conditions hold:

• task j prefers vehicle i over A(j)

• vehicle i has enough resources to be assigned task j

The existence of a type 2 blocking pair (j, i) ∈ (T, V ) in a given matching A is

unstable since vehicle i is wasteful by not making full use of its resources.

Definition (Stable Matching). Given a matching A, A is a stable matching if and

only if there are no type 1 or type 2 blocking pairs.

3.3.1 Algorithm Design

A key characteristic of the RS algorithm is the preference ranking made by both

parties. Since the preference ranking by either party is made independent of the

other, they can be made to represent different objectives which is a desired trait in

Jia He Sun - School of Computing



3.3. PROPOSED SOLUTION 29

multi-objective problems such as the one discussed in this chapter. The crux of the

RS algorithm is how the preference rankings are formulated. For the algorithm to

be effective, the preference rankings must be a good reflection of the optimization

objectives.

• Preference ranking for tasks: prefer vehicles with the most tasks, tie breaks

between vehicles by which vehicle completes said task faster. Task j prefers

vehicle n over vehicle k if
∑K

i=1 xin >
∑K

i=1 xik.

• Preference ranking for vehicles: prefer tasks that complete the fastest on said

vehicle. Vehicle i prefers task a over task b if lai < lbi.

The preference ranking for tasks aims to primarily minimize the number of vehicles

used which decreases the load on the wireless channels. The preference ranking for

vehicles aims to primarily minimize the task completion speed. Together, these two

preference mechanics accurately represent the two objectives of the ILP formulated

in the previous section.

Consider another matching algorithm, bipartite matching, where the optimization

objective is represented only by edge weights. It is extremely difficult to formulate

an accurate representation of both objectives when confined to a single form. In our

case, it is especially difficult to represent the second objective, number of vehicles

used, in such a way since it means we are minimizing the number of nodes covered in

a bipartite matching. Hence, we can easily observe the motivation behind designing

a heuristic based on the RS algorithm.

The proposed algorithm based on the RS algorithm is deployed to produce a

stable matching. The proposed algorithm runs as follows: (The pseudocode is given

in Algorithm 1):
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1. Put all tasks into a list called unmatched. Go to 2.

2. Update preference rankings for vehicles. Go to 3.

3. Update preference ranking for tasks. Take any task in unmatched, j, and go to

4. If none, end algorithm.

4. Consider task j’s most preferred vehicle, i. Go to 5. If task j has no preferred

vehicle remaining, remove task j from unmatched list and go to 3.

5. If vehicle i can accommodate task j (has enough computational power and

time). Match task j to vehicle i and go to 3. If vehicle i does not have enough

time remaining, remove vehicle i from task j’s preferences and go to 4. If vehicle

i does not have enough computational power, go to 6.

6. Consider all vehicle i’s currently matched tasks. Then of these tasks, consider

the set of tasks that vehicle i prefers less than task j, call it U . Iterate through

U from least preferred to most preferred. If unmatching task k allows vehicle i

to have enough resources to be assigned task j, then unmatch task k and match

task j. Then remove vehicle i from task k’s preference ranking and go to 3. If

not, then remove vehicle i from task j’s preference and consider task j’s next

most preferred vehicle and go to 5.

3.3.2 Algorithm Analysis

First, we will analyze the output of the algorithm.

Lemma 2 (No Type 1 Blocking Pairs). The proposed algorithm produces a matching

A that has no type 1 blocking pairs.
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Algorithm 1 Pseudocode of the proposed RS Based Heuristic

Require: preference ranking for both vehicles and tasks
1: while there are unmatched tasks do
2: for any unmatched task j do
3: update preference ranking of each task
4: if task j’s preferences are empty then
5: remove task j from the algorithm
6: end if
7: i⇐ task j’s most preferred vehicle
8: if pi ≥ wj then
9: assign task j to vehicle i

10: break
11: end if
12: if lji > ti then
13: remove vehicle i from task j’s preferences
14: break
15: end if
16: if pi > wi then
17: U ⇐ tasks currently matched to vehicle i that is less preferred
18: than task j in order from least preferred to most preferred
19: for task k ∈ U do
20: if unmatching task k allows assignment of task j then
21: unmatch task k and assign task j to vehicle i
22: remove vehicle i from task k’s preference ranking
23: break
24: end if
25: end for
26: remove vehicle i from task j’s preference ranking
27: end if
28: end for
29: end while
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Proof. Suppose for contradiction that produced matching A has type 1 blocking pair

(j, i) ∈ (T, V ). Then, consider the point in the algorithm at which task j was assigned

to vehicle l = A(j). Since task j prefers vehicle i over vehicle l, that is
∑K

i=1 xjl >∑K
i=1 xji, vehicle i must have been considered before vehicle l. Then, vehicle i must

have rejected task j at this point which means for all tasks k with A(k) = i either of

the following is true: no tasks who is assigned to vehicle i is less preferred than task

j, or pi+wk < wj. Then vehicle i would have been removed from task j’s preferences.

This contradicts the assumption that task j prefers vehicle l over vehicle i. Therefore,

the matching A cannot have a type 1 blocking pair (j, i) ∈ (T, V ).

Lemma 3 (No Type 2 Blocking Pairs). The proposed algorithm produces a matching

A that has no type 2 blocking pairs.

Proof. Suppose for contradiction that produced matching A has type 2 blocking pair

(j, i) ∈ (T, V ). Then, consider the point in the algorithm at which task j was assigned

to vehicle l = A(j). Since task j prefers vehicle i over vehicle l, that is
∑K

i=1 xjl >∑K
i=1 xji, vehicle i must have been considered before vehicle l. Then, it must be that

vehicle i rejected task j which means pi < cj or ti < lji. Then vehicle i would have

been removed from task j’s preferences which is a contradiction to the assumption of

the existence of type 2 blocking pair (j, i).

Theorem 4 (Stable Matching). The proposed algorithm produces a stable matching

A.

Proof. According to Lemma 1 and Lemma 2, there are type 1 or type 2 blocking pairs

in the produced matching A. Therefore, the produced matching is stable.
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Table 3.1: Experiment Variables

Variables Experiment Settings
pi random between 20-25
ti random between 15-30
wj random between 4-5
lji random between 1-20

Now, we will analyze the termination condition and the complexity of the proposed

algorithm.

Theorem 5 (Termination). The proposed algorithm terminates after at most NK

iterations.

Proof. First, notice that in each iteration of the algorithm, a task is either matched

to a vehicle (may be after the unmatching of another task) or is removed from the

algorithm. That is to say, the number of unmatched tasks never decreases in any

iteration of the algorithm. Then, for an infinite loop to exist, there must be an infinite

number of times where a task is unmatched from a vehicle. However, whenever a task

is unmatched from a vehicle, it is removed from the vehicle’s preference ranking. That

is, the removed task will never be assigned to the vehicle it was once unmatched with.

Therefore, there can be at most NK number of unmatchings and thus, an infinite

loop is impossible and the algorithm is guaranteed to terminate. Furthermore, for

any given iteration, for unmatchings to occur, some task must have been assigned to

some vehicle. There can be at most NK number of such assignments since each task

can be assigned to each vehicle at most once. Therefore, the algorithm will take NK

iterations to terminate in the worst case.
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3.4 Experimental Results

There are two baseline algorithms that are used for evaluation. The first is a

randomized algorithm that randomly assigns a vehicle as the “current” vehicle. Then,

it will iterate through the tasks in an arbitrary order, assigning each task onto the

“current” vehicle. If a task cannot fit onto the “current” vehicle, the system will

choose another random vehicle as the “current” vehicle. It will be referred to as

the next fit algorithm. The second baseline algorithm is a greedy algorithm that

organizes tasks from largest to smallest, then orders the vehicles from most to least

computational power offered. Then, the system will iterate through the tasks in order

and, for each task, it will iterate through the vehicles in order until a vehicle is found

able to take on the task. This algorithm is based on a greedy algorithm for the bin

packing problem (the formulated problem is similar to the bin packing problem as

shown by the NP-complete proof in Section 2). The complexity of these algorithms

are O(K +N) and O(KN) respectively.

3.4.1 Example Case

A demonstration of all three algorithms are given in the following example sce-

nario:

• 6 vehicles

• 12 tasks

• delay objective weight α = 1, number of vehicles used objective weight β = 10

In this scenario, the vehicle to task ratio is 2 which simulates a balanced scenario
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Figure 3.1: Example Case Objective Value Comparison

(neither peak hours nor off-hours) and the objective weights are such that both ob-

jectives are valued similarly. The exact configurations of the vehicles and tasks are

randomized as displayed in Table 3.1.

The objective values of the three solutions are displayed in Fig. 3.1. Due to space

limitations, the exact solution matrices of each algorithm in this example case are not

shown but it is notable that the solutions were all different from each other. In terms

of performance, all three algorithms performed the exact same in terms of the number

of the vehicles used objective. This is to be expected to be similar, though it is only

the exact same in very small settings. In terms of the delay objective, the matching

algorithm performed better than the greedy algorithm which performed better than

the next fit algorithm.

To evaluate how well the RS based heuristic performs, we will test its objective

value against that of the optimal to find the approximation loss. However, due to
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the high computational demands of computing the optimal solution of an ILP at

large scales, this evaluation had at most 50 vehicles. The objective weights will be

1 and 10. This evaluation will be done at three different vehicles to task ratios

to emulate how busy the environment is. The three ratios are: 1:1 (abundance of

computational resources compared to tasks); 1:2 (moderate amount of computational

resources compared to tasks); and 1:3 (scarcity of computational resources compared

to tasks).

The variables for the experiments are once again randomized as indicated in Ta-

ble 3.1 To minimize the effect of the randomized variables, each instance of the exper-

iment was ran 20 times and the averaged results of the approximation loss experiment

are displayed in Fig. 3.2. The y-axis represents how far from the optimum the results

are. For example, the matching algorithm (1:1) gives a solution that is 1.7 times

the optimum. Evident in these results, the matching algorithm performs significantly

better than the other two algorithms, especially in settings with more tasks. Com-

paring different task to vehicle ratios, more tasks correlate to worse performance.

This is to be expected as it is much more difficult to assign tasks optimally when

computational resources are more limited.

3.4.2 Large Scale Experimentation

To examine the performance of the RS based heuristic at a large scale, several

experiments on various settings were performed and evaluated against the two baseline

algorithms. The same three different vehicle to task ratios were tested (1:1, 1:2, 1:3).

Again, these vehicle to task ratios are designed to emulate how busy the environment

is.
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Figure 3.2: Average Experimental Loss with 50 Vehicles

Two different pairs of objectives weights were tested. These different objective

weights are designed to emulate different valuations of the objectives (the first number

is the weight of the delay objective α and the second number is the weight of the

“number of vehicles used” objective β): (1, 10), (1, 100).

• Objective weights: 1, 10. The delay objective is much larger than the “number

of vehicles used” objective and dominates the optimization (for situations where

we mostly care about delay and not about the number of vehicles used).

• Objective weights: 1, 100. “number of vehicles used” objective is much larger

than the delay objective and dominates the optimization (for situations where

we mostly care about the number of vehicles used).

Each experiment will be run on a scale from 50 vehicles to 500 vehicles at in-

tervals of 50 using all three algorithms. The two different objectives are evaluated

separately. The variables for the experiments are once again randomized as indicated
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Figure 3.3: Objective Weights α = 1, β = 10, Delay Objective

Figure 3.4: Objective Weights α = 1, β = 10, Number of Vehicles Used Objective

in Table 3.1. To minimize the effect of the randomized variables, the experiment was

performed 20 times. The Coefficient of Variation (CV) was at most 0.15, indicating

very low variance in the data sample. Furthermore, any particular data point was at
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most 31% away from the mean. Therefore, it is reasonable to conclude that the ran-

domness of the initialized variables has little impact on the result of the experiments.

The experimental results for objective weights (1, 10) are displayed in Fig. 3.3 and

Fig. 3.4. In this case, where the delay objective dominates the number of vehicles used

objective, the RS based matching algorithm performs significantly better in terms of

delay while performing similarly to the other two algorithms in terms of the number

of vehicles used.

In the second case, where the number of vehicles used objective has weight 100,

the simulation results are displayed in Fig. 3.5 and Fig. 3.6. Again, the proposed

RS based algorithm outperforms the other two algorithms by a large margin while

performing similarly in terms of the other objective.

The reasoning behind this performance is because both baseline algorithms (greedy

and next fit) are similar to bin packing algorithms and will inherently prioritize the

number of vehicles used objective based on their design. While, the RS based al-

gorithm aims to minimize both the delay objective and the number of vehicles used

objective simultaneously. As a result, the RS based algorithm produces much less

delay than the other two algorithms. Also, performing similarly to these two base-

line algorithms in terms of the number of vehicles used objective can be considered

a success for the proposed algorithm. Furthermore, the busiest vehicle to task ratio

simulated is 1:3, which results in some vehicles not needing to be used.

Another simulation is performed where the vehicle to task ratio is 1:5 to replicate

an extremely busy environment where most vehicles need to be used. Fig. 3.7 dis-

plays the results of this simulation. We can see that, on average, the proposed RS

based algorithm performs slightly better than the two baseline algorithms. In this
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type of setting, where most available vehicles need to be used, assigning the right

tasks to the right vehicles becomes increasingly important. Therefore, the RS based

algorithm’s performance in the number of vehicles used objective is slightly better

than the other two baseline algorithms while still performing significantly better in

the delay objective.

Figure 3.5: Objective Weights α = 1, β = 100, Delay Objective

3.5 Conclusion

This chapter proposes a formulation of the task assignment problem in the PVC

environment as a weighted multi-objective optimization problem that aims to mini-

mize both task delay and wireless channel load. Then, a heuristic based on the RS

algorithm is proposed and evaluated against two other baseline algorithms on various

simulation settings on a scale of up to 500 vehicles and 1,500 tasks.
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Figure 3.6: Objective Weights α = 1, β = 100, Number of Vehicles Used Objective

Figure 3.7: Objective Weights α = 1, β = 10, Both Objectives
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Chapter 4

An Online Fair Resource Allocation Solution for

Fog Computing

The main contributions of this chapter can be summarized as follows:

• Formulate multi-resource, multi-server, and heterogeneous task resource alloca-

tion problem as a fairness maximizing problem using the Dominant Resource

Fairness (DRF) scheme.

• Propose three low complexity heuristics for different types of tasks: ordered/unordered,

splittable/unsplittable.

• Evaluate the proposed heuristics against three baseline scheduling algorithms.

The rest of this chapter is organized as follows: we will first discuss some related

works, then describe the system model, formulate the problem, propose our solu-

tion, analyze the proposed solution, display the simulation results, and conclude the

chapter.

42



4.1. RELATED WORKS 43

4.1 Related Works

Due to the dynamic nature of the numerous edge devices in a fog environment,

this chapter will focus on online scheduling algorithms, more specifically, real-time

scheduling algorithms, where the tasks arrive to the system in an online manner.

There are two main approaches to online scheduling, the first is termed completely

reactive scheduling where tasks are scheduled as they arrive based on a set of prede-

fined rules or heuristics [37]. This approach easily handles randomly arriving tasks

but often performs far from optimal due to the reactive nature of the algorithm [38].

The second approach is predictive-reactive scheduling where an initial schedule is

constructed for existing tasks and then revised when certain events occur such as new

task arrivals or machine breakdowns. Predictive-reactive scheduling usually performs

better than completely reactive scheduling, but due to the dynamic nature of the fog

computing environment where large amount of tasks are continuously arriving, it is

inappropriate to adopt the predictive-reactive scheduling approach [39] [28].

There are many works regarding online scheduling techniques in various settings,

Ouelhadj and Petrovic [38] give a detailed survey of such methods. Many of these

scheduling schemes focus on some measure of task completion time (makespan, late-

ness, etc). However, resource fairness is an objective that is often critical in computing

environments. Allocating resources with respect to fairness and efficiency is a funda-

mental problem in the design of fog computing environments. Maintaining fairness

ensures that a balanced allocation of resources amongst the tasks where no tasks are

starved at the expense of another. Furthermore, resource fairness also encourages

maximizing the utilization of all available resources. Maintaining resource fairness

is an area quite heavily explored during the development of cloud computing several
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years ago. In 2009, Microsoft [40] published the “Quincy” scheduler that maps a

scheduling problem to a graph data structure that computes the optimal schedule

that maximizes a global cost function that includes locality and resource fairness.

In 2010, Zaharia et al. [41] proposed an algorithm called “Delay Scheduling” to ad-

dress the conflict between locality and fairness for the 600-node Hadoop cluster at

Facebook.

However, since fog computing is an area that has only recently emerged, resource

fairness within a fog environment is a much less explored topic. In 2018, Zhang

et al. [42] proposed Fair Task Offloading (FTO) scheme that minimizes task delay

and energy consumption while maintaining fairness between network nodes. In 2019,

Mukherjee et al. [43] proposed a scheduling policy that maximizes the number of tasks

completed before their deadline while maintaining fairness by keeping both high pri-

ority and low priority task queues stable. However, both of these scheduling schemes

only maximize fairness between different fog nodes instead of between participating

users. This is also true for the Quincy scheduler and the Hadoop Delay Scheduling

algorithm.

Fairness between users who request tasks can be evaluated by DRF, an index

developed by Ghodsi et al. in 2011 [2]. The DRF scheme is a multi-resource gen-

eralization of max-min fairness. According to the DRF scheme, in a multi-resource

environment where tasks have heterogeneous resource demands, a user’s dominant

share is the maximum global share that the user has been allocated of any resource.

In essence, the DRF scheme aims to have all users have equal dominant share values

in any allocation. In their publication defining the DRF scheme, Godhsi et al. [2]

considered many other fairness schemes including Asset Fairness and Competitive
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Equilibrium from Equal Incomes (CEEI). Asset Fairness aims to equalize the aggre-

gate resource value allocated to each user assuming that equal shares of different

resources are worth the same. That is, 1% of resource 1 is equivalent to 1% of re-

source 2. CEEI, the preferred method of fair resource allocation in microeconomic

theory [2], initially allocates 1
n
of each resource to each user and subsequently, each

user can trade their resources with other users. Godhsi et al. [2] found that the DRF

scheme is the only fairness scheme that satisfies the following four key qualities:

• Sharing Incentive: every task’s allocation is better than that obtained by divid-

ing every resource evenly between tasks

• Strategy-proof: tasks cannot get better allocation by lying about their require-

ments

• Pareto Efficiency: all available resources are allocated subject to satisfying the

other properties, and without preempting existing allocations

• Envy Free: no task prefers the allocation of another task

Asset Fairness violates the sharing incentive quality and CEEI violates the strategy-

proof quality. All of the above qualities are desired in a fog computing environment

and would increase the Quality of Service (QoS) for users. So far, it remains a difficult

problem to design an online resource allocation scheme while maintaining multi-server

multi-resource fairness. In 2019, Bian et al. [28] tackle this problem and proposed

“FairTS”, a fair online task scheduling scheme that uses DRF as their fairness scheme.

FairTS uses a reinforcement learning approach to minimize average task slowdown

while maximizing the minimum dominant resource share of each task. However, as a
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machine learning based algorithm, FairTS falls behind heuristics in terms of compu-

tation speed, a much desired attribute in fog computing environments. Furthermore,

FairTS is designed for a simplified model where all resources are located in one com-

puter/server. However, in a realistic fog setting, task requests would be sent to be

processed by a collection of fog servers. In 2014, Wang et al. [3] proposed “Dominant

Resource Fairness with Heterogeneous Servers”, which is a generalization of DRF

for multiple heterogeneous servers. This generalization preserves the strategy-proof,

Pareto efficiency, and envy free qualities of DRF. The sharing incentive strategy is

not well defined in a multi-server setting as there is are very many different ways to

evenly divide the resource pool. This paper uses the generalized version of DRF put

forward by Wang et al. [3] since the environment we consider also includes multiple

heterogeneous servers. However, the work proposed in this chapter differs from Wang

et al.’s work in 2014 since we consider a system with non-divisible and heterogeneous

tasks.

In 2017, Östman [44] proposed the Distributed Dominant Resource Fairness (DDRF)

scheme that uses a gradient network topology overlay to create a dynamic directed

sorted graph based on their users’ resource share. The proposed scheme allows multi-

ple servers to allocate resources in parallel to achieve faster allocation time. However,

similar to the proposed DRF scheme, the environment considered is also very basic.

It only considers the case where each user will have an unbounded number of divis-

ible homogeneous tasks. In fact, after the proposal of the DRF scheme in 2011, its

assumption of divisible tasks is a heavily discussed topic as it contradicts the Leontief

preferences [45].

In practice, users will usually have indivisible tasks that are also heterogeneous.
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Zaharia et al. [41] revealed the resource usage profiles of tasks in a 2000-node Hadoop

cluster at Facebook over one month (October 2010) and showed that the requested

tasks have very different resource requirements. Furthermore, there may be other

requirements and characteristics for each user such as ordering and splittablility. A

user’s tasks can be ordered where they must be completed in a task chain. A user’s

tasks can also be splittable where they can be allocated more than their required

amount of resources to be completed faster. This chapter will consider the fair re-

source allocation problem under these more realistic conditions.

4.2 System Model

In this section, we will define the system model used in this chapter which includes

the DRF scheme proposed by Ghodsi et al. [2] and the generalization made by Wang

et al. [3]. This chapter will consider a time step system, where a set of users will

arrive to the system at the beginning of each time step in an online manner. Before

the system model is formally defined, we first give an intuitive description of how the

system operates at each time step:

1. A set of users arrive to the system (may be an empty set). Each user will have a

set of tasks to be completed (assumed to be non-empty). Information regarding

these tasks are not known to the system until their arrival.

2. A user’s tasks can be ordered or unordered, splittable or unsplittable. We will

consider all four possible cases. We will also assume tasks are non-preemptive,

that is, they cannot be stopped once they have started computing.

3. The system will then allocate a portion of resources on any amount of servers
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to each user (new and existing) based on the DRF scheme. This means that

existing users can have their allocation changed.

4. After the resources have been allocated, the tasks will be run for one time step

using the resources that they have been assigned.

5. Any users who have completed all their tasks will now leave the system.

6. Repeat for next time step.

In a fog computing system, n users will be connected to k nearby fog node servers

S = {1, ..., k}. Each server contributes m resources R = {1, ...,m}. Each server j has

resource capacity cj = (cj1, ..., cjm) where each element is represented as a fraction of

the total amount of said resource in the entire system. That is, for every resource,

the total capacity of all servers added together is 1 as shown in Equation 4.1.

Equation 4.1 Total Resource Capacity

∀s ∈ {1, . . . ,m},
k∑

x=1

cxs = 1 (4.0.1)

Each user i = 1, 2, ... will have a set of heterogeneous tasks that need to be

completed. As mentioned previously, this chapter uses the DRF scheme to evaluate

fairness in resource allocation. To define this fairness scheme, each task n = 1, 2, ...

will be defined by the following characterizations [3]:

• Task n’s arrival time is tarrn .

• Task n’s time steps required for computation is ln (assuming resource demands

are met).
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• Task n’s resource demand vector,Dn, is the transpose of the vector (Dn1, ..., Dnm)
T

where each Dnr is a fraction over the total amount of resource r in the entire

system (assumed to be non-negative).

• Task n’s global dominant resource r∗n := argmaxr∈R Dnr. That is, r∗n refers

to the resource that user n demands the most of (with respect to the overall

resource pool).

• Task n’s normalized resource demand vector dn = (dn1, ..., dnm)
T where dnr =

Dnr/Dnr∗n for each resource r = 1, ...,m. In other words, normalizing the vector

Dn results in the vector dn.

It is important to note that a task’s resource demand vector, Dn, is defined as a

fraction over the total amount of resources in the system. For example, consider a

system with 10 units of CPU and 100 units of memory with a task, n, that requires 1

unit of CPU and 2 units of memory. Task n’s resource demand vector, Dn, is (
1
10
, 2
100

)

or ( 1
10
, 1
50
). Then, task n’s global dominant resource r∗n is CPU since task n requires

10% of all CPU units in the system and only 2% of all memory units in the system.

This may seem counter intuitive as task n requires more units of memory than CPU

but the DRF scheme used in this chapter deals in percentages with respect to the

whole system. Next, we will define the key metric used to measure the fairness of

allocation. Under the DRF scheme, each user is characterized by their global dominant

share [2] [3].

Equation 4.2 Global Dominant Share [2] [3]

Gi(Ai) :=
∑
j∈S

min
r∈R
{Aijr/dir} (4.0.2)
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Definition. Under the DRF scheme, the global dominant share of user i under al-

location Ai is defined in Equation 4.2 where, for each server j and user i, Aij =

(Aij1, ..., Aijm)
T is the allocation vector and Aijr is the share of resource r allocated

to user i on server j represented as a fraction over the total amount of resource r in

the entire system. And, Ai = (Ai1, ..., Aik) is the allocation matrix for user i.

In other words, the global dominant share of a user is how much of the system’s

resource has been given to the most limiting resource of that user. An example case

will be given in the next subsection to further explain the global dominant share

definition. Due to the heavy notation used in this section, Table 4.1 gives all the

relevant notation used in this chapter. The notation used in this chapter is very

similar to the notation used in Ghodsi et al.’s [2] and Wang et al.’s [3] work in

defining the DRF scheme.

4.2.1 Example Case

To illustrate the idea behind the DRF scheme, a simple example with 2 servers

and 2 users is given. The setting is as follows:

• Server 1 has 5 CPU units and 11 memory units

• Server 2 has 11 CPU units and 5 memory units

• Server 1 capacity vector c1: (
5
16
, 11

16
)

• Server 2 capacity vector c2: (
11
16
, 5

16
)

• User 1’s task requirements: 1 CPU units and 0.5 memory units

• User 2’s task requirements: 0.5 CPU units and 1 memory units
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cj resource capacity of server j
tarrn task n’s arrival time
ln task n’s time steps required for computation (execution time)

Dn
task n’s resource demand vector represented as a vector of fractions
over the total amount of resources in the system

r∗n
task n’s global dominant resource (the resource that task n is
demanding the most of in terms of percentage)

dn task n’s normalized resource demand vector (Dn normalized)

Ai
user i’s received allocation represented as an (m, k)-matrix where
m is the number of resources and k is the number of servers

Gi(Ai)
user i’s global dominant share under allocation Ai which is a
measure of the amount of resources allocated to user i (we are
trying to maximize this value for each user)

zi

user i’s size characteristic (only relevant for user’s with ordered tasks
or task chains) and is a vector representing the largest demands of each
resource in the entire task chain

F (n, j)

the fitness of assigning task n to server j and is defined as
F (n, j) = ||dn − cj/c

∗
j || where cj/c

∗
j

is the normalized vector of the remaining resources of server j and
||.|| is the 2-norm of a vector.

F ′(i, j)

the fitness of assigning task chain i to server j and is defined as
||zi/z∗i − c∗j/c

∗
j1|| where zi/z

∗
i

is the normalized size characteristic of user i, cj/c
∗
j is the

normalized vector of the remaining resoures of server j, and ||.|| is the
2-norm of a vector.

Table 4.1: Table of Notations

• Assume both users have an unbounded number of these divisible tasks

• User 1’s resource demand vector D1: (
1
16
, 1

32
)

• User 2’s resource demand vector D2: (
1
32
, 1

16
)

• User 1’s normalized resource demand vector d1: (1,
1
2
)

• User 2’s normalized resource demand vector d2: (
1
2
, 1)
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From the normalized resource demand vectors, we can see that CPU is user 1’s

global dominant resource r∗1 and memory is user 2’s global dominant resource r∗2.

Optimally, it is obvious that user 1 should be allocated all of server 2 and user

2 should be allocated all of server 1. Following this allocation, user 2’s allocation

is ( 5
16
, 11
16
). User 2’s global dominant share is min{5/16

1/2
, 11/16

1
} = 10

16
(as defined in

Equation 4.2), which is associated with the CPU resource. Similarly, user 1’s global

dominant share is 10
16
. Notice that the two users’ global dominant shares are the same

and also the maximum that they can be. So, the system would allocate all of server

1 to user 2 and let it run 10 tasks and allocate all of server 2 to user 1 and let it run

10 tasks as well. This will continue until a new user arrives and the resources will be

reallocated. This allocation results in equal global dominant share and is displayed

in Fig. 4.1. We can see that it achieves extremely high resource utilization of 15
16

or

around 94%.

Instead of using global dominant share, there exists a simpler way to extend

the DRF scheme to our multi-server environment by applying the DRF scheme to

each server individually. However, it is easy to show that this approach is naively

inappropriate using the same example case as above.

Following this approach, we would consider the two servers separately. In server 1,

we can see that both users’ dominant resource is CPU. So, to maximize the minimum

dominant share, both users will receive half of the available CPU which would be 2.5

each. Similarly, in server 2, we see that both users’ dominant resource is memory.

Then, they will both receive half of the available memory resource which is also 2.5

each. So, user 1 will be able to run 2.5 tasks on server 1 and 5 tasks on server 2. User

2 will be able to run 5 tasks on server 1 and 2.5 tasks on server 2. Both users will be
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Figure 4.1: Optimal Allocation Under DRF

able to run 7.5 tasks each. This is far worse than the solution found previously. This

naive allocation is displayed in Fig. 4.2. Evidently, it achieves much worse resource

allocation than the previous solution provided by the DRF scheme. The resource

utilization for this allocation is 22.5
32

or around 70% which is significantly worse than

the previous allocation.

4.3 Problem Formulation

The fairness maximizing optimization problem is defined as follows:
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Figure 4.2: Naive Allocation

maximize min
i∈T

Gi(Ai) (4.0.3a)

subject to∑
i

Aijr ≤ cjr, j = 1, ..., k, r = 1, ...,m, (4.0.3b)

Ai ∈ {0, 1}mk, i ∈ T (4.0.3c)

Recall that Ai = (Ai1, ..., Aik) is the allocation matrix for user i and Gi(Ai) :=
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∑
j∈S minr∈R{Aijr/dir} is the global dominant share of user i. Objective 4.0.3a aims

to maximize the minimum global dominant share among all users. Constraint 4.0.3b

makes sure that all feasible allocations do not exceed the resource capacity of each

server. Constraint 4.0.3c is the integer constraint for the problem.

Theorem 6. The formulated fairness maximizing optimization problem is NP-hard.

Proof. Consider the bin packing problem [36] with bin size B and item weights w:

minimize
x, y

N∑
i=1

yi (4.0.4a)

subject to

N∑
i=1

xji = 1, j = 1, . . . , K, (4.0.4b)

K∑
j=1

wjxji ≤ Byi,i = 1, . . . , N, (4.0.4c)

yi ∈ {0, 1} i = 1, . . . , N, (4.0.4d)

xji ∈ {0, 1} j = 1, . . . , K, i = . . . , N (4.0.4e)

Now, consider a single resource instance of our resource allocation problem where

items and bins correspond to tasks and servers, respectively. The single resource

corresponds to the size limitations in the bin packing problem, that is, the size of a

item wj corresponds to the resource requirement of a task and the capacity of a bin

B corresponds to the resource capacity of a server. Then, the bin packing problem

exactly corresponds to a single resource instance of our problem where each user has

exactly one task. The bin packing problem (decision version) asks if all items can fit

Jia He Sun - School of Computing



4.4. PROPOSED SOLUTION 56

into A bins where A is a given constant. Notice that fitting all tasks onto A servers in

our resource allocation problem would produce a unique objective value which would

be the global dominant share of the smallest task. This value is unique since if any

task was to remain unassigned to a server, the minimum global dominant share would

be 0. Therefore, the following questions are equivalent:

• Can all tasks be assigned onto A servers?

• Can there be such a task assignment onto A servers where the minimum global

dominant share is the minimum wj over all j = 1, . . . , K?

Therefore, we can see that the bin packing decision problem can be reduced to

a decision instance of the fairness maximizing optimization problem. Since the bin

packing problem is known to be NP-hard, our formulated resource allocation problem

is NP-hard as well.

4.4 Proposed Solution

As mentioned previously, there are different types of tasks that can be sent to

the system. A user’s tasks can be splittable which means they can be allocated an

integer multiple of its resource requirements to complete proportionally faster (two

times the required resources means two times the completion speed) or unsplittable

which means that they complete at the same speed as long as its requirements are

satisfied. A user’s tasks can also be ordered where each task must be completed in a

specific order or unordered where the tasks can be completed in any order and at the

same time. For ordered tasks, it is likely that data must be transferred between the

tasks, as such they must be completed on the same server since it will be inefficient
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and expensive to offload tasks of the same chain onto different servers. Furthermore, a

task chain cannot be interrupted once it has started. In this section, we will consider

four different cases:

1. all users have unsplittable and unordered tasks

2. all users have splittable and unordered tasks

3. all users have unsplittable and unordered tasks

4. all users have splittable and ordered tasks

4.4.1 Unsplittable and Unordered

In this section, we will assume that all users have a set of unsplittable and un-

ordered tasks. This means that tasks from the same user need not be on the same

server since they are unordered. This is the least restricted case where tasks can be

scheduled on any server and in any order. It is also meaningless to assign a task more

than its required resource since it does not increase its completion speed. Algorithm 2

is a proposed heuristic to schedule tasks in this scenario and is inspired by Wang et

al.’s work [3] since the unsplittable and unordered case is similar to their considered

problem. However, since they do not consider heterogeneous tasks, their proposed

heuristic is not ideal for our case. The key difference in our proposed Algorithm 2

is the ordering of each user’s task from most resource demanding to least resource

demanding.

In Algorithm 2, at each time step, the system repeatedly picks the user with

the lowest global dominant share and schedules its most resource demanding task

until there are no remaining tasks left or there are no more resources available. By
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Algorithm 2 Unsplittable and Unordered

1: for each time step do
2: new users arrive
3: available tasks ← all unassigned tasks of every user
4: while there are available tasks do
5: current user i ← user with the smallest global dominant share Gi(Ai)
6: current task n ← available task of current user i with the largest resource

demands
∑

dn
7: if no server can fit current task n then
8: remove current task n from available tasks
9: else

10: assign current task n to best fit server
11: update remaining server resources and available tasks
12: end if
13: end while
14: end for

picking the user with the lowest global dominant share (line 5), we aim to maximize

the minimum global dominant share across all users, which is the objective of our

optimization problem. Instead of picking any task, the most resource demanding

tasks are picked first to further minimize the variance between the global dominant

shares (line 6). Consider the following example:

• 1 server with 10 units of a single resource

• User 1 has three small tasks and one big task. The small tasks each require 1

resource unit and the big task requires 4 resource units.

• User 2 has the same 4 tasks.

If we schedule the tasks based on some arbitrary order, say we schedule the tasks

from smallest to largest. Then, based on Algorithm 2, we will alternate between the

two users until we schedule all six small tasks. There remains 4 units of resources
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left on the server which would be allocated to user 1 (without loss of generality).

The result would be user 1 getting 7 units of resource and user 2 getting only 3.

However, if the most resource demanding tasks are picked first, then the result would

be both users getting 5 units of the resource which means equal global dominant share

between the two users. Hence, it would be the optimal solution since it maximizes

the minimum global dominant share. From this example we can see that scheduling

the most resource heavy tasks can be beneficial.

After picking the most resource heavy task, we assign it to the best fit server.

Recall that the fitness of assigning task n to server j is defined as F (n, j) = ||dn −

cj/c
∗
j || (introduced in Table 4.1). Then in line 10 of Algorithm 2, task n’s best fit

server is characterized by the server who produces the smallest F (n, j) value. In other

words, the best fit server is the server whose remaining resource vector is the most

similar to its resource demands. This ensures that CPU heavy tasks are assigned to

CPU heavy servers, for example.

4.4.2 Splittable and Unordered

In this section, we will assume that all users have a set of splittable and unordered

tasks. Tasks from the same user need not be on the same server since they are

unordered. Tasks can be allocated an integer multiple of their required resources

to decrease completion time. Splittable tasks add a new dimension to the resource

allocation problem since it must be considered if a resource is better used to speed

up an existing task or to begin a new task. Furthermore, since it is now possible to

allocate more than the required resources to a task, we can get closer to equal global

dominant shares than in the previous case. Algorithm 3 is the proposed heuristic for

Jia He Sun - School of Computing



4.4. PROPOSED SOLUTION 60

the splittable and unordered case.

Algorithm 3 Splittable and Unordered

1: for each time step do
2: new users arrive
3: available tasks ← all unassigned tasks of every user
4: while there are available tasks do
5: current user i ← user with the smallest global dominant share Gi(Ai)
6: current task n ← available task of current user i with the largest resource

demands
∑

dn
7: if no server can fit current task nj then
8: remove current task n from available tasks
9: else

10: assign current task n to best fit server
11: allocate kDj resources where k minimizes V ariancei(Gi(Ai)) and k < lj
12: update remaining server resources and available tasks
13: end if
14: end while
15: end for

Due to the similarities of the two cases, Algorithm 3 works similarly to Algo-

rithm 2. Once again, at each time step, the system repeatedly picks the user with

the lowest global dominant share (line 5) and schedules its most resource demanding

task (line 6) until there are no remaining tasks left or there are no more resources

available. The best fit server mentioned in line 10 is the same characterization as in

Algorithm 2. To reiterate, the fitness of assigning task n to server j is defined by

F (n, j) = ||dn − cj/c
∗
j ||.

The reasoning for this design is the same as in the previous case. The key difference

is how to determine what integer multiple of the required resources to allocate to each

scheduled task.

Recall that the DRF scheme’s objective is to maximize the minimum global domi-

nant share across all users, however, it is difficult to maximize this in each step of the
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allocation process since the lowest global dominant share user just needs to surpass

another user’s global dominant share to do so. However, the aim behind the max-

imization of the minimum global dominant share is to achieve a balanced resource

share across all tasks. Therefore, the proposed algorithm allocates resources with a

goal to minimize the variance of all global dominant shares (line 11). Minimizing

variance is not the same as maximizing the minimum global dominant share across

all users with non-divisible tasks, but it is commonly used as a substitute since the

minimum global dominant share is a value that is difficult to maximize at each time

step [28]. However, there is a requirement that a task j should not be allocated more

than lj times its resource requirements where lj is its execution time.

Theorem 7. In the unordered and splittable case, a task j should not be allocated

more than lj times its resource requirements.

Proof. By allocating lj times its resource requirements to task j, its execution time

is reduced to 1 time step, which is the lowest that it can be in our time step model.

Increasing its allocation any further becomes a wasteful use of resources. Therefore,

task j must not be allocated more than lj times its resource requirements.

4.4.3 Unsplittable and Ordered

In this section, we will assume that all users have a set of unsplittable and ordered

tasks. Tasks from the same user must be on the same server.

Since we are approaching the task scheduling problem from a fair allocation per-

spective, this case becomes trivial. In this case, it is meaningless to assign more than

the required resources to a user since the tasks are unsplittable. Moreover, since each

user has a task chain, a user will only need to run one unsplittable task at any given
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point. As such, there is no decision to be made from a fairness perspective as each

user only requires a fixed amount of resources at any given moment and allocating

more will not be beneficial to the user at all. Therefore, we will not propose a heuristic

for this case.

4.4.4 Splittable and Ordered

In this section, we will assume that all users have a set of splittable and ordered

tasks. Tasks from the same user must be on the same server and a task chain cannot be

interrupted. Tasks can be allocated an integer multiple of their required resources to

decrease completion time. This case is rather complex since a task chain can include

tasks with wildly different resource demands, which makes it difficult to allocate

without being wasteful. Furthermore, allocation can be changed during a task chain

based on the task currently being executed. Overall, this means a lot more decisions

will need to be made in order to achieve the most fair allocation. Algorithm 4 describes

the proposed algorithm. Since, in this case, each user has exactly one task chain, we

will use the terms “user” and “task chain” interchangeably. That is, user i and task

chain i refer to the same thing.

At each time step, if new users arrive, Algorithm 4 will first compute every new

user’s size characteristic, which is defined as follows. For user i, recall that their size

characteristic is defined by zi (line 7). This is the vector representing the largest

demand of each resource in the entire task chain. For example, the largest demand

of each resource in a task chain with resource demands (1, 5), (5, 1), (6, 2) is (6, 5).

Then, the size characteristic zi for the user with this task chain would be (6, 5). In

other words, if user i is allocated zi resources, then it can execute its task chain in
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Algorithm 4 Splittable and Ordered

1: for each time step do
2: new users arrive
3: if new users is empty then
4: pass
5: end if
6: for user i ∈ new users do
7: compute size characteristic zi
8: end for
9: for user i ∈ existing users do

10: reduce Ai to zi
11: end for
12: available users ← all users
13: while available users is non empty and server resources are non empty do
14: current user i ← user with the smallest global dominant share Gi(Ai) tie

break by largest size characteristic zi
15: if no server can fit current user i then
16: remove current user i from available users
17: else
18: assign current user i to best fit server
19: allocate kzi resources where k minimizes V ariancei(Gi(Ai)) with k <

maxj∈ilj
20: end if
21: update server resources and available users
22: end while
23: end for

its entirety. Then, we reduce all users currently executing task chains down to its

lowest required amount of resources which is zi for user i (line 10). This is to allow

room for new users to be allocated resources but at the same time not to interrupt

any existing task chain. Then, the algorithm will select the user with the smallest

global dominant share, however, since all new users have global dominant share 0,

this selection will have a tie break by largest size characteristic zi (line 14). This is

because the largest size characteristic typically denotes the most resource demanding

users. We select the most resource demanding users to allocate first due to it being
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easier to allocate large task chains when there is more resource available. Then, we

select the best fit server based on the size characteristic and assign the task chain to

this server until its completion (line 18). Recall that the best fit server for a given

task chain is characterized differently than for a single task. The fitness of server

j for task chain i is defined as F ′(i, j) = ||zi/z∗i − c∗j/c
∗
j1|| where cj is the vector

representing the remaining resources of server j and zi is the size characteristic of

task chain i (introduced in Table 4.1). Then, the proposed algorithm allocates an

integer multiple amount of resources such that to minimize the variance of all global

dominant shares (line 19). However, there is the requirement that a user i should not

be allocated more than maxn∈ilj times its size characteristic zi. Repeat for next time

step.

Theorem 8. In the splittable and ordered case, a task chain i should not be allocated

more than maxj∈ilj times its size characteristic zi.

Proof. Consider allocating maxn∈ilj times its size characteristic zi amount re-

sources to task chain i. Then, for each task n in task chain i, it will be executed on

at maxn∈ilj times zi amount of resources. By definition, maxn∈ilj ≥ lj and zj ≥ Dj.

Hence, each task n in task chain i has its execution time reduced to less than or equal

to 1 time step which is the minimum it can be. Therefore, it is wasteful to allocate

more resources to this task chain. Therefore, a task chain i should not be allocated

more than maxn∈ilj times its size characteristic zi.

4.5 Algorithm Analysis

A key characteristic is that the proposed algorithms must be very low complexity.

This is due to the highly dynamic nature of online scheduling in fog computing.
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Existing cloud clusters have server populations in the tens of thousands with even

more users and task requests. As an augmentation to the cloud computing paradigm,

fog computing is expected to be implemented at the same scale. Furthermore, these

algorithms must be run at every time step, therefore the scheduling algorithms must

be highly efficient. Following, we will prove the termination and complexity for each

of the proposed algorithms.

Theorem 9. Algorithm 2 terminates and has complexity O(n2) where n is the number

of available tasks.

Proof. Suppose there are n available tasks and m servers at each time step. Then,

we will need to first find the user with the smallest global dominant share which takes

O(logn) time in the worst case. Then, we must select this user’s task with the largest

resource demands which takes O(logn) time in the worst case. Then, we must find

the best fit server for the selected task which takes m time since we must compute

the best fit function for each server. In the worst case, we must do this for all n tasks.

Then, the complexity of this algorithm is O(n(m+ logn)). Without loss of generality,

assume that n > m, then O(n(m + logn)) = O(n2 + nlogn) = O(n2). Therefore,

Algorithm 2 is O(n2).

Theorem 10. Algorithm 3 terminates and has complexity O(n2) where n is the num-

ber of tasks.

Proof. Suppose there are n tasks and m servers at each time step. Algorithm 3

performs similarly to Algorithm 2. The key difference is needing to find the variance of

all users’ global dominant share after the selection of a task. Computation of variance

takes O(n) time in the worst case [46]. Then, the complexity of this algorithm is
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O(n(m + n)). Without loss of generality, assume that n > m, then O(n(m + n)) =

O(n2 + n2) = O(n2). Therefore, Algorithm 3 is O(n2).

Theorem 11. Algorithm 4 terminates and has complexity O(n2) where n is the num-

ber of tasks.

Proof. Suppose there are n users and m servers at each time step. Algorithm 4

will compute the size characteristic zi for all new users and reduce allocations Ai for

all existing users which takes O(n) time. Then, we will need to find the user with

the smallest global dominant share tie broken by largest size characteristic which

takes O(logn) time in the worst case. Then, we must find the best fit server for the

selected user which takes m time since we must compute the best fit function for each

server. Then, variance of the global dominant shares is calculated which takes O(n)

time [46]. In the worst case, we must do this for all n users. Then, the complexity

of this algorithm is O(n(m+ logn+ n+ n)). Without loss of generality, assume that

n > m, then O(n(m+ logn+n+n)) = O(nm+nlogn+n2+n2) = O(n2). Therefore,

Algorithm 4 is O(n2).

4.6 Simulation Results

The simulation task data comes from usage traces of Google clusters [47]. These

traces provide the resource demand information of over 900 users on a Google cluster

of over 10,000 servers. The server configurations of these servers are provided by

Wang et al. in 2014 [3]. The tasks and servers used in our simulations are randomly

extracted from the above data. Note that this data does not indicate the characteris-

tics of each task (ordered/unordered, splittable/unsplittable), so these characteristics

were assumed in the simulations. Each time, we simulate 5 users who arrive based
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on a Poisson process with mean rate of 0.5 on 3 servers with 2 resource types (CPU

and memory). Each user has a random number of tasks.

To evaluate the performance of the proposed algorithms, three baseline algorithms

will be used: First Come First Server (FCFS), Randomized, and Shortest Job First

(SJF). The first two algorithms are self-explanatory. SJF is a very efficient algorithm

used to minimize waiting time for scenarios where tasks’ execution time is known [48].

It works by scheduling the tasks with the shortest execution time first. In fact, it is

optimal, in that for a given set of processes and their execution times it gives the least

average waiting time for each process [48]. While it is not optimal in our multi-server,

multi-resource, online environment, it still provides a good benchmark. Since we have

multiple servers, SJF will decide on which server to assign each task to using the same

best fit characterization used in the proposed algorithms. Furthermore, to evaluate

Algorithm 3 and Algorithm 4, splittable versions of all three baseline algorithms are

used. In these versions, each task is allocated a random integer multiple of its required

resources. The splittable versions of the baseline algorithms work the same otherwise.

Each experiment was run 20 times for more generalized results since the input data

are randomly selected.

4.6.1 Algorithm 2 and Algorithm 3

We will first evaluate the performance of Algorithm 2 and Algorithm 3. Algo-

rithm 3 and Algorithm 2 are discussed together because they are very similar in

design. Additionally, it allows us to observe the effect of having splittable tasks in

the system.
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Figure 4.3: Average Resource Utilization (Unsplittable/Unordered and Split-
table/Unordered)

Resource Utilization

Our first evaluation focuses on how well the algorithms utilize the available re-

sources in the scheduling system. Fig. 4.3 shows the average resource utilization

percentage of all simulated algorithms. We can see that Algorithm 2 slightly outper-

forms SJF (unsplittable) and severely outperforms FCFS (unsplittable) and Random-

ized (unsplittable). Higher resource utilization correlates with faster completion times

and Fig. 4.4 reflects this. Algorithm 2 completes tasks at a similar speed as SJF (un-

splittable) and much faster than FCFS (unsplittable) and Randomized (unsplittable).

Since Algorithm 2 is designed such that it maximizes the minimum global dominant

share across all users, performing similar to SJF (unsplittable) which focuses on task

completion speed can be considered a success.
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Figure 4.4: Average Completion Time (Unsplittable/Unordered and Split-
table/Unordered)

In the splittable case, a similar result is shown. Algorithm 3 performs the best

in terms of resource allocation followed by SJF (Splittable) and then by Randomized

(Splittable) and FCFS (Splittable). This is mirrored in Fig. 4.4.

It is expected that Algorithm 3 outperforms all other algorithms, both splittable

and unsplittable in terms of resource utilization. This is due to splittable tasks being

able use more resources since the system can fill gaps of unused resources by allocating

more to a splittable task, and consequently these splittable tasks will complete faster

resulting in better performance in completion speeds as well. While Algorithm 2

performs similarly to SJF (Unsplittable), Algorithm 3 outperforms SJF (Splittable)

by a rather significant margin.

In summary, the proposed algorithms performed similarly or better than their

counterparts in terms of both resource utilization and task completion times.
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Figure 4.5: CPU Utilization Over Time (Unsplittable/Unordered and Split-
table/Unordered)

Fig. 4.5 and Fig. 4.6 shows the resource utilization over the duration of one sample

simulation. In these figures, we can observe the changes in resource utilization over

each individual time step. The FCFS and Randomized algorithms are omitted so

as to not clutter the figures. We can see that while Algorithm 2 and Algorithm 3

perform better than their SJF counterparts on average, they may perform worse

during specific time steps. This is due to the nature of online environments where

users arrive continuously. Then, since Algorithm 2 and Algorithm 3 complete tasks

faster than their SJF counterparts, they may have more downtime between the arrival

of users. This would explain why the SJF algorithms have higher resource utilization

at specific time steps but lower completion times overall.
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Figure 4.6: Memory Utilization Over Time (Unsplittable/Unordered and Split-
table/Unordered)

Fairness

The second evaluation will focus on the main objective of this chapter, fairness

between users. Recall that the DRF scheme aims to maximize the minimum global

dominant share across all users. Then, to evaluate this objective, we use two met-

rics: average variance of all global dominant shares and average minimum dominant

share. Fig. 4.7 and Fig. 4.8 summarize our results. Fig. 4.7 displays the variance of

the global dominant shares of all users at every time step averaged throughout the

simulations. Lower variance typically correlates to higher minimum global dominant

share. Fig. 4.8 displays the minimum global dominant share at every time step aver-

aged throughout the simulations. As per the DRF scheme, a higher minimum global

dominant share means a fairer allocation. Between the two proposed algorithms,

Algorithm 3 performs better than the nonsplittable case in terms of the two met-

rics. This is due to the splittability of its tasks allows it to have more freedom when
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Figure 4.7: Average Dominant Share Variance (Unsplittable/Unordered and Split-
table/Unordered)

Figure 4.8: Average Minimum Dominant Share (Unsplittable/Unordered and Split-
table/Unordered)

allocating resources to users. It also performs significantly better than Splittable.

We can see the two figures show similar results where Algorithm 2 and Algorithm 3

have better results than the other algorithms. This is to be expected as the other

algorithms do not consider global dominant shares at all.
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Figure 4.9: Average Resource Utilization (Splittable/Ordered)

4.6.2 Algorithm 4

To evaluate the performance of the Algorithm 4, the same 3 baseline algorithms

will be used: FCFS, Randomized, and SJF. However, since none of the three algo-

rithms are meant for splittable tasks, they will allocate a random integer multiple of

the required amount of resources per task chain. They will also pick servers using the

best fit characterization. The simulations were run for 20 times for more generalized

results since the input data are randomly selected.

Resource Utilization

Our first evaluation, once again, focuses on how well the algorithms utilize the

available resources in the scheduling system. Fig. 4.9 shows the average resource

utilization percentage of all simulated algorithms. Results show that the proposed
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Figure 4.10: Average Completion Time (Splittable/Ordered)

Algorithm 4 outperforms all of the other algorithms by a significant margin. Conse-

quently, Fig. 4.10 shows a similar result in completion times. In both metrics, SJF

performs better than FCFS and Randomized but not as good as Algorithm 4.

Fig. 4.11 and Fig. 4.12 shows the resource utilization over the duration of one

sample simulation. In these graphs, once again, we see that the baseline algorithms

have higher resource utilization at specific time steps compared to the proposed Al-

gorithm 4. Algorithm 4 executes users’ task faster and the users will leave the system

faster which results in downtime between the arrival of users where the available

resources aren’t being used.

Fairness

The second evaluation will focus on fairness between users. To evaluate this

objective, we will once again use two metrics: average variance of all global dominant
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Figure 4.11: CPU Utilization Over Time (Splittable/Ordered)

Figure 4.12: Memory Utilization Over Time (Splittable/Ordered)
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Figure 4.13: Average Dominant Share Variance (Splittable/Ordered)

shares, and average minimum dominant share. Fig. 4.13 and Fig. 4.14 summarize our

results. Fig. 4.7 displays the variance of the global dominant shares of all users at

every time step averaged throughout the simulations. Fig. 4.8 displays the minimum

global dominant share at every time step averaged throughout the simulations. We

see that Algorithm 4 performs the best out of all simulated algorithms. However,

Algorithm 4 has extremely low global dominant share variance but this does not

translate to average minimum dominant share as Algorithm 4 only slightly beats out

SJF in average minimum dominant share. This is due to the nature of the ordered

environment. Since each user’s tasks are ordered, they cannot be completed in parallel

and will hence stay in the system for longer. Then, there will be more users executing

tasks in the system at any given time.
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Figure 4.14: Average Minimum Dominant Share (Splittable/Ordered)

4.7 Conclusion

This chapter examines the online resource allocation problem within fog comput-

ing under an environment that is multi-server, multi-resource, and includes heteroge-

neous tasks. This research problem is approached from a fairness perspective where

the DRF scheme is used to formulate a fairness maximizing optimization problem.

Four different types of tasks are considered: ordered/unordered, splittable/unsplit-

table. Three low complexity heuristics are proposed and are evaluated against three

baseline algorithms. Results show that the proposed algorithms perform similar to

better in terms of task completion speed but significantly better in terms of user

fairness.
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Chapter 5

Conclusion

In this thesis, we examined two different scheduling problems under two emerging

computing paradigms, Multi-access Edge Computing (MEC) and fog computing. We

approached these problems using low complexity heuristics to match the dynamic

nature of the MEC and fog environments.

The first problem studied in Chapter 3 was the task assignment problem in Parked

Vehicular Computing (PVC) where we formulated the problem as a weighted multi-

objective optimization problem that aimed to minimize both task delay and wireless

channel load. By minimizing task delay, we hope to reduce the task completion times.

By minimizing the wireless channel load, we hope to maintain stable and high-quality

wireless communication between the participating parties. To solve this problem, we

proposed a stable matching based heuristic where the respective preference rankings

are based on the two objectives.

The second problem studied in Chapter 4 was the resource allocation problem

in fog computing where we approached the problem from a fairness perspective.

78



79

We examined an environment that is multi-server, multi-resource, and includes het-

erogeneous tasks. Furthermore, four different types of tasks were considered: or-

dered/unordered, splittable/unsplittable. We proposed three low complexity heuris-

tics that aim to maximize the minimum global dominant share across all users as per

the Dominant Resource Fairness (DRF) scheme.

We conclude this thesis by putting forward some details on current limitations

and future research directions.

For the task assignment problem in PVC, formulation of the optimization problem

is a key area. Currently, only the total task completion speed is measured in terms

of delay as it is the simplest measure of delay. However, practically speaking, there

may be other requirements of task completion such as deadlines. Then, a different

and more general task completion metric would have to be used as the objective.

Furthermore, the transmission delay is also an important area to look at. In this

thesis, we only minimized the number of vehicles in use as an attempt to maintain

communication quality and decrease transmission delay. However, there could be

other approaches to minimizing transmission delay which could be implemented in

future algorithms. Secondly, only a general formulation of an incentive mechanism

is proposed in this thesis. Future work could include a formal formulation of such a

mechanism and evaluating the ability of the incentive mechanism to provide accurate

remaining parking time estimates through various simulations. This should then be

compared against the effectiveness of parking time estimation via statistical mod-

elling. Another extension would be designing a hybrid solution using both statistical

analysis and incentivized user submissions.

For the fair resource allocation problem in fog computing, a key limitation in the
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algorithms proposed is that they are not very generalizable. Realistically, not all

requested tasks will be the same in terms of ordered/unordered and splittable/un-

splittable. In the future, we should work towards an algorithm that is able to handle

an environment where there are tasks with a variety of characteristics. To do so,

machine learning techniques such as deep reinforcement learning would likely have to

be used.

However, currently, machine learning is used to produce highly specific models that

are only equipped to handle some very specific instances of an optimization problem.

We are still quite far from being able to produce a generalizable machine learning

model that can be used to solve several, or perhaps an entire class of, optimization

problems. Nevertheless, it is without a doubt that machine learning is emerging as

a promising approach to solving optimization problems such as the two examined in

this thesis.
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