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Abstract—With significant advances in recent technology, com-
putational power must meet new demands. As a result, Multi-
access Edge Computing (MEC) is a new networking paradigm
that has received a surge in interest from both academia and
industry. MEC aims to push powerful computing and storage
capabilities from remote cloud servers to up-close edge servers.
Vehicular Edge Computing (VEC), a subfield of MEC, has been
introduced to specifically increase the computing capacity of
vehicular networks, an essential component for the development
of Intelligent Transportation Systems (ITS). A problem in the
current development of VEC is the high cost of installing enough
edge servers to compute all offloaded tasks at peak hours.
However, we have observed that parked vehicles (PVs) are a
rich reserve of underutilized computing resources, and their
incorporation into the VEC network could lead to a solution
to the aforementioned problem. This paper proposes a task
offloading system with an assumed parking time estimation
mechanism. Then, a novel formulation of the task offloading
problem is presented that minimizes both task delay and wireless
channel load. Finally, a matching based heuristic is proposed and
evaluated at various configurations of the VEC environment.

Index Terms—heuristic, intelligent vehicles, multi-access edge
computing, task assignment

I. INTRODUCTION

Cloud computing is at the forefront of computing paradigms
by centralizing main computing and storage capabilities in a
remote location that is accessible to all [9]. However, with the
vision of the Internet of Things (IoT), we have realized that
the remote network system is simply not enough to satisfy the
intensive computational needs of the future that we envision
[4] [8]. Thus, MEC has been pushed forward as a replacement
system since it provides high computational power closer to
users, thereby reducing latency [15] [16]. This is especially
important in vehicles as the vehicular environment requires
incredibly low latency due to its dynamic nature [2]. Further-
more, since it is financially infeasible to mass install expensive
computing hardware into every vehicle, edge computing has
become the foremost solution in vehicular networks [7].

Vehicular Edge Computing (VEC) aims to use roadside
edge servers to augment the computing capacity of vehicular
environments [19]. Under this framework, smart vehicles can
reliably offload their computational tasks, alleviating the heavy
burden placed on the vehicles’ internal hardware [17] [18].
There are three layers included in this model: the Cloud

layer (cloud computing servers), the MEC layer (RSU or
roadside units), and the User layer (vehicle devices). The key
advantages of VEC over Vehicular Cloud Computing (VCC)
are: low latency, mobility support, real-time communication,
heterogeneous device support, and lower cost of development.
Although it is not without drawbacks: limited capacity and
lower computing capability [9].

A current problem in VEC is the high cost of installing
enough edge servers to compute all offloaded tasks at peak
hours [9]. However, researchers have observed that parked
vehicles (PVs) are a rich reserve of underutilized computing
resources [1]. Thus, their incorporation into the VEC network
could lead to a solution to the aforementioned problem.
Research in this area is called Parked Vehicular Computing
(PVC).

However, there exist some challenges that should be ad-
dressed to facilitate PVC. Firstly, scheduling computational
tasks on participating PVs poses an interesting challenge
[14]. PVs have an inherent problem in that they may leave
unexpectedly, perhaps in the middle of a task, which re-
sults in the system having to offload the interrupted task
elsewhere, delaying it further. Secondly, the VEC network
mainly communicates over wireless channels and the overuse
of such channels would cause an overload, thereby decreasing
the quality of existing communications [13]. There are also
security and privacy challenges, but these lie outside the scope
of this paper [20] [21] [22] [23].

Huang et al. [5] designed an interactive protocol with basic
request and response operations for service provision in PVC.
Then, they solve the resource scheduling optimization problem
using a Stackelberg game approach. Ge et al. [3] proposed an
efficient SEA algorithm to solve the vehicle selection and task
assignment problem regarding service migration, namely, the
transfer of tasks between base stations.

Wang et al. [12] implemented a system-level simulator of
LTE Sidelink C-V2X Communication for 5G. This simulation
showed that the volume of data severely increased as the
number of users in the network increased. The packet reception
ratio (PRR) also drastically decreased as the network size
grew, reaching as low as 80.36% in a 1,920 user setting. As
VEC is expected to be implemented on scales much larger than
that, it is essential to maintain the quality of communication



in these settings.
However, there are currently very few works that address

the potential issues of large-scale implementation, specifically
in terms of wireless communications. The current paradigm
for wireless communication in vehicular networks is C-V2X,
which has strict requirements on Quality of Service (QoS)
such as high reliability and low latency [6]. Therefore, it
is necessary for VEC networks to not only provide reliable
high-speed service but also to maintain the quality of the
communication channels used.

In this paper, we propose a many-to-one stable matching
algorithm to assign tasks to vehicles in such a way that not
only minimizes task delay but also maintains the quality of the
wireless communication channels. Stable matching is chosen
since we are facing a multi-objective problem. Stable matching
allows both the set of vehicles and the set of tasks to have
preference rankings over the other set which can accurately
represent both objectives of the problem.

The main contributions of this paper are summarized as
follows:

• To reflect the multifaceted problem of task assignment
within a VEC environment, we propose a novel formula-
tion that includes a weighted multi-objective that aims to
minimize both task delay and wireless channel load. We
then prove the NP-completeness of the problem.

• We propose a many-to-one stable matching based heuris-
tic to efficiently assign tasks to vehicles.

• We evaluate and confirm the performance of the proposed
heuristic through various simulations.

The work done in this paper is included as part of Jia He Sun’s
master thesis with Queen’s University [25].

II. SYSTEM MODEL

We consider one cell which has one BS, M users, and N
PVs with available computing resources. During high usage
hours, the BS will be overloaded and unable to complete all
of the tasks offloaded to it by the users. Then, it will have
to offload K tasks to nearby PVs. The time-slot model is
adopted where the set of tasks and PVs remain fixed within
each time slot while varying across different slots. Therefore,
in each time slot we have defined the following variables
(it is assumed that this information will be available to the
scheduling system):

• N = number of vehicles
• K = number of tasks
• pi = computational power offered by vehicle i
• ti = parking time estimation of vehicle i (the assumption

of having knowledge of this variable will be discussed)
• wj = computational power required for task j
• lji = task completion speed of task j if assigned to vehicle

i

To summarize the system model, the task assignment prob-
lem can be described as assigning K tasks to N vehicles where
each task is assigned to only one vehicle, each vehicle can be
assigned multiple tasks but cannot exceed their computational

capacity, assigned tasks’ computation time should not exceed
their vehicle’s estimated parking time.

A. Problem Formulation

Now, we will formulate the task assignment problem as a
weighted multi-objective ILP.

minimize
x, y

α

K∑
j=1

N∑
i=1

xjilji + β

N∑
i=1

yi (1a)

subject to
N∑
i=1

xji = 1, j = 1, . . . ,K, (1b)

K∑
j=1

wjxji ≤ piyi,i = 1, . . . , N, (1c)

K∑
j=1

ljixji ≤ ti, i = 1, . . . , N, (1d)

yi ∈ {0, 1} i = 1, . . . , N, (1e)
xji ∈ {0, 1} j = 1, . . . ,K, i = . . . , N (1f)

1) Variables: The two variables in the formulated ILP are:
• xji = 1 if task j is assigned to vehicle i and 0 otherwise
• yi = 1 if vehicle i is assigned at least one task and 0

otherwise
2) Constraints: The constraints can be summarized as

follows:
• (2b): each task is assigned to only one vehicle.
• (2c): the assigned tasks cannot go over vehicle’s max

load.
• (2d): the task for each vehicle must be able to finish

before the vehicle leaves.
• (2e): yi = 1 if vehicle i is assigned a task and 0 otherwise

(integrality constraint).
• (2f): xji = 1 if task j is assigned to vehicle i and 0

otherwise (integrality constraint).
3) Objective: Firstly, α and β are constant objective

weights. Their values decide which which objective should
be prioritized. The first objective is to minimize the task
completion time which is crucial in a VEC task assignment
environment. The task completion time consists of two parts:
computation time, and transmission time (both ways). For a
particular task, its computation time, lcomp, depends on the
vehicle it is assigned to, so lcomp

ji is the amount of time it
takes vehicle i to compute task j. For the transmission time
of a task, ltransji , it depends on the transmission power of the
BS. Then, total task completion speed is the computation time
plus the transmission time as shown in Equation II-A3.

lji = lcomp
ji + ltransji (2)

The second objective is the number of vehicles used for
task assignment. This is because the deployment of tasks



and any other form of information between the VEC base
station and the parked vehicles will be done through wireless
channels which are limited in size. To maintain the quality
of communication on these wireless channels, especially in
highly populated metropolitan areas, the number of vehicles
used is also minimized.

Theorem 1: (NP-Complete) The formulated ILP is NP-
Complete.
Proof. Consider the corresponding decision version of this
problem. That is, given M , is there a task assignment that
is within the defined constraints that has an objective value
≤ M? Certificate: A certificate would be an assignment of
tasks to the vehicles denoted by the (K,N) matrix x where
xji = 1 if task j is assigned to vehicle i and 0 otherwise.
To verify this certificate, we would need to check that the
assignment satisfies each constraint and calculate the objective
value, that is:

1) First obtain vector y from x where yi = 1 if vehicle i
has a task and 0 otherwise

2) Verify each task is assigned to only 1 vehicle
3) Verify assigned tasks do not go over vehicle’s max load
4) Verify the assigned tasks finish before the vehicle has to

leave
This would take O(NK) time, which means verifying a

solution is polynomial. We will now show that bin packing
reduces to the formulated ILP [24]. First set the objective
weights α = 0 and β = 1. Then, set all pi = B, where
B can be any constant. Then set all lji and ti = 0. Then the
optimization problem becomes:

minimize
x, y

N∑
i=1

yi (3a)

subject to
N∑
i=1

xji = 1, j = 1, . . . ,K, (3b)

K∑
j=1

wjxji ≤ Byi,i = 1, . . . , N, (3c)

yi ∈ {0, 1} i = 1, . . . , N, (3d)
xji ∈ {0, 1} j = 1, . . . ,K, i = . . . , N (3e)

Notice that this is an exact formulation of the bin packing
problem where wj is the size of item j and B is the capacity
of each bin. The decision bin packing problem is known to be
NP-complete. Thus, the decision version of our optimization
problem is NP-complete. Therefore, our optimization problem
is NP-complete.

III. PROPOSED SOLUTION

The heuristic proposed is a stable matching based algorithm.
The algorithm it is based on has several names including:
“Extended Gale-Shapley algorithm”, “the Capacitated Gale-
Shapley algorithm”, “the Roth-Shapley algorithm”, and “the
deferred acceptance algorithm”. Following, it will be referred

to as the RS algorithm [10]. The proposed heuristic is a version
of the RS algorithm that is modified to fit the dynamic nature
of the PVC environment. The assignment of tasks to vehicles
can be described as a many-to-one matching.

Definition 1 (Matching): A matching A is a mapping from
the set of tasks T to the set of vehicles V , T → V , which
satisfies all of the following:

• for any task j ∈ T , |A(j)| ≤ 1
• for any task j ∈ T , and any vehicle i ∈ V , A(j) = i if

and only if j ∈ A(i)

The proposed algorithm requires both sets V and T to have
preference rankings over each other. That is, for all i ∈ V , i
must have a preference ranking including all j ∈ T and vice
versa.

Definition 2 (Preference Ranking): For any vehicle i ∈ V ,
its preference ranking is a list L including all tasks in T . If task
j ∈ T comes before task j′ ∈ T in L, we say that vehicle
i prefers task j to task j′. For tasks in T , their preference
rankings are defined vice versa.

How these rankings are to be computed are discussed later
in this section. Next, we will define a stable matching, but first
we will define two types of blocking pairs.

Definition 3 (Type 1 Blocking Pair): Given a matching A,
(j, i) ∈ (T, V ) forms a type 1 blocking pair if all of the
following conditions hold:

• task j prefers vehicle i over A(j)
• there exists task k with vehicle i ∈ A(k) such that vehicle

i prefers task j to task k and the removal of task k allows
the assignment of task k onto vehicle i

The existence of a type 1 blocking pair (j, i) ∈ (T, V ) in
a given matching A is unstable since it means that task j can
be assigned to a more preferred vehicle and vehicle i can be
assigned a more preferred task at the cost of a less preferred
task. Apart from the type 1 blocking pair, there is also the
type 2 blocking pair.

Definition 4 (Type 2 Blocking Pair): Given a matching A,
(j, i) ∈ (T, V ) forms a type 2 blocking pair if all of the
following conditions hold:

• task j prefers vehicle i over A(j)
• vehicle i has enough resources to be assigned task j

The existence of a type 2 blocking pair (j, i) ∈ (T, V ) in
a given matching A is unstable since vehicle i is wasteful by
not making full use of its resources.

Definition 5 (Stable Matching): Given a matching A, A is
a stable matching if and only if there are no type 1 or type 2
blocking pairs.

A. Algorithm Design

A key characteristic of the RS algorithm is the preference
ranking made by both parties. Since the preference ranking
by either party is made independent of the other, they can be
made to represent different objectives which is a desired trait
in multi-objective problems such as the one discussed in this
paper. The crux of the RS algorithm is how the preference
rankings are formulated. For the algorithm to be effective,



the preference rankings must be a good reflection of the
optimization objectives.

• Preference ranking for tasks: prefer vehicles with the
most tasks, tie breaks between vehicles by which vehicle
completes said task faster. Task j prefers vehicle n over
vehicle k if

∑K
i=1 xin >

∑K
i=1 xik.

• Preference ranking for vehicles: prefer tasks that com-
plete the fastest on said vehicle. Vehicle i prefers task a
over task b if lai < lbi.

The preference ranking for tasks aims to primarily minimize
the number of vehicles used which decreases the load on the
wireless channels. The preference ranking for vehicles aims
to primarily minimize the task completion speed. Together,
these two preference mechanics accurately represent the two
objectives of the ILP formulated in the previous section.

Consider another matching algorithm, bipartite matching,
where the optimization objective is represented only by edge
weights. It is extremely difficult to formulate an accurate
representation of both objectives when confined to a single
form. In our case, it is especially difficult to represent the
second objective, number of vehicles used, in such a way since
it means we are minimizing the number of nodes covered
in a bipartite matching. Hence, we can easily observe the
motivation behind designing a heuristic based on the RS
algorithm.

The proposed algorithm based on the RS algorithm is de-
ployed to produce a stable matching. The proposed algorithm
runs as follows: (The pseudocode is given in Algorithm 1):

1) Put all tasks into a list called unmatched. Go to 2.
2) Update preference rankings for vehicles. Go to 3.
3) Update preference ranking for tasks. Take any task in

unmatched, j, and go to 4. If none, end algorithm.
4) Consider task j’s most preferred vehicle, i. Go to 5. If

task j has no preferred vehicle remaining, remove task
j from unmatched list and go to 3.

5) If vehicle i can accommodate task j (has enough com-
putational power and time). Match task j to vehicle i
and go to 3. If vehicle i does not have enough time re-
maining, remove vehicle i from task j’s preferences and
go to 4. If vehicle i does not have enough computational
power, go to 6.

6) Consider all vehicle i’s currently matched tasks. Then of
these tasks, consider the set of tasks that vehicle i prefers
less than task j, call it U . Iterate through U from least
preferred to most preferred. If unmatching task k allows
vehicle i to have enough resources to be assigned task
j, then unmatch task k and match task j. Then remove
vehicle i from task k’s preference ranking and go to 3.
If not, then remove vehicle i from task j’s preference
and consider task j’s next most preferred vehicle and go
to 5.

B. Algorithm Analysis

First, we will analyze the output of the algorithm.

Algorithm 1 Pseudocode of the proposed RS Based Heuristic
Require: preference ranking for both vehicles and tasks

0: while there are unmatched tasks do
0: for any unmatched task j do
0: update preference ranking of each task
0: i ⇐ task j’s most preferred vehicle
0: if pi ≥ wj then
0: assign task j to vehicle i
0: break
0: end if
0: if lji > ti then
0: remove vehicle i from task j’s preferences
0: break
0: end if
0: if pi > wi then
0: U ⇐ tasks currently matched to vehicle i that is

less preferred
0: than task j in order from least preferred to most

preferred
0: for task k ∈ U do
0: if unmatching task k allows assignment of task

j then
0: unmatch task k and assign task j to vehicle i
0: remove vehicle i from task k’s preference

ranking
0: break
0: end if
0: end for
0: remove vehicle i from task j’s preference ranking
0: end if
0: end for
0: end while=0

Lemma 2 (No Type 1 Blocking Pairs): The proposed al-
gorithm produces a matching A that has no type 1 blocking
pairs.

Proof. Suppose for contradiction that produced matching A
has type 1 blocking pair (j, i) ∈ (T, V ). Then, consider the
point in the algorithm at which task j was assigned to vehicle
l = A(j). Since task j prefers vehicle i over vehicle l, that is∑K

i=1 xjl >
∑K

i=1 xji, vehicle i must have been considered
before vehicle l. Then, vehicle i must have rejected task j at
this point which means for all tasks k with A(k) = i either
of the following is true: no tasks who is assigned to vehicle i
is less preferred than task j, or pi + wk < wj . Then vehicle
i would have been removed from task j’s preferences. This
contradicts the assumption that task j prefers vehicle l over
vehicle i. Therefore, the matching A cannot have a type 1
blocking pair (j, i) ∈ (T, V ).

Lemma 3 (No Type 2 Blocking Pairs): The proposed al-
gorithm produces a matching A that has no type 2 blocking
pairs.

Proof. Suppose for contradiction that produced matching
A has type 2 blocking pair (j, i) ∈ (T, V ). Then, consider
the point in the algorithm at which task j was assigned to



TABLE I
EXPERIMENT VARIABLES

Variables Experiment Settings
pi random between 20-25
ti random between 15-30
wj random between 4-5
lji random between 1-20

vehicle l = A(j). Since task j prefers vehicle i over vehicle
l, that is

∑K
i=1 xjl >

∑K
i=1 xji, vehicle i must have been

considered before vehicle l. Then, it must be that vehicle i
rejected task j which means pi < cj or ti < lji. Then vehicle
i would have been removed from task j’s preferences which
is a contradiction to the assumption of the existence of type 2
blocking pair (j, i).

Theorem 4 (Stable Matching): The proposed algorithm
produces a stable matching A.
Proof. According to Lemma 1 and Lemma 2, there are type
1 or type 2 blocking pairs in the produced matching A.
Therefore, the produced matching is stable.

Now, we will analyze the termination condition and the
complexity of the proposed algorithm.

Theorem 5 (Termination): The proposed algorithm termi-
nates after at most NK iterations.

Proof. First, notice that in each iteration of the algorithm,
a task is either matched to a vehicle (may be after the
unmatching of another task) or is removed from the algorithm.
That is to say, the number of unmatched tasks never decreases
in any iteration of the algorithm. Then, for an infinite loop
to exist, there must be an infinite number of times where
a task is unmatched from a vehicle. However, whenever a
task is unmatched from a vehicle, it is removed from the
vehicle’s preference ranking. That is, the removed task will
never be assigned to the vehicle it was once unmatched with.
Therefore, there can be at most NK number of unmatchings
and thus, an infinite loop is impossible and the algorithm is
guaranteed to terminate. Furthermore, for any given iteration,
for unmatchings to occur, some task must have been assigned
to some vehicle. There can be at most NK number of such
assignments since each task can be assigned to each vehicle at
most once. Therefore, the algorithm will take NK iterations
to terminate in the worst case.

IV. EXPERIMENTAL RESULTS

There are two baseline algorithms that are used for eval-
uation. The first is a randomized algorithm that randomly
assigns a vehicle as the “current” vehicle. Then, it will iterate
through the tasks in an arbitrary order, assigning each task onto
the “current” vehicle. If a task cannot fit onto the “current”
vehicle, the system will choose another random vehicle as
the “current” vehicle. It will be referred to as the next fit
algorithm. The second baseline algorithm is the standard
greedy algorithm that organizes tasks from largest to smallest,
then orders the vehicles from most to least computational
power offered. Then, the system will iterate through the tasks

Fig. 1. Average Experimental Loss with 50 Vehicles

in order and, for each task, it will iterate through the vehicles
in order until a vehicle is found able to take on the task. This
algorithm is based on a greedy algorithm for the bin packing
problem (the formulated problem is similar to the bin packing
problem as shown by the NP-complete proof in Section 2). The
complexity of these algorithms are O(K + N) and O(KN)
respectively. Other algorithms are not chosen as there are no
other works that evaluate the two objectives at the same time.

A. Approximiation Loss

To evaluate how well the RS based heuristic performs,
we will test its objective value against that of the optimal
to find the approximation loss. However, due to the high
computational demands of computing the optimal solution of
an ILP at large scales, this evaluation had at most 50 vehicles.
The objective weights will be 1 and 10. This evaluation will be
done at three different vehicles to task ratios to emulate how
busy the environment is. The three ratios are: 1:1 (abundance
of computational resources compared to tasks); 1:2 (moderate
amount of computational resources compared to tasks); and
1:3 (scarcity of computational resources compared to tasks).

The variables for the experiments are once again random-
ized as indicated in Table I To minimize the effect of the
randomized variables, each instance of the experiment was
ran 20 times and the averaged results of the approximation
loss experiment are displayed in Fig. 1. The y-axis represents
how far from the optimum the results are. For example,
the matching algorithm (1:1) gives a solution that is 1.7
times the optimum. Evident in these results, the matching
algorithm performs significantly better than the other two
algorithms, especially in settings with more tasks. Comparing
different task to vehicle ratios, more tasks correlate to worse
performance. This is to be expected as it is much more difficult
to assign tasks optimally when computational resources are
more limited.

B. Large Scale Experimentation

To examine the performance of the RS based heuristic at
a large scale, several experiments on various settings were
performed and evaluated against the two baseline algorithms.
The same three different vehicle to task ratios were tested
(1:1, 1:2, 1:3). Two different pairs of objectives weights



Fig. 2. Objective Weights α = 1, β = 10, Delay Objective

Fig. 3. Objective Weights α = 1, β = 10, Number of Vehicles Used
Objective

were tested. These different objective weights are designed to
emulate different valuations of the objectives (the first number
is the weight of the delay objective α and the second number
is the weight of the “number of vehicles used” objective β): (1,
10) - for situations where we mostly care about delay and not
about the number of vehicles used, and (1, 100) - for situations
where we mostly care about the number of vehicles used.

Each experiment will be run on a scale from 50 vehicles to
500 vehicles at intervals of 50 using all three algorithms. The
two different objectives are evaluated separately. The variables
for the experiments are once again randomized as indicated in
Table I. To minimize the effect of the randomized variables,
the experiment was performed 20 times. The CV was at
most 0.15, indicating very low variance in the data sample.
Furthermore, any particular data point was at most 31% away
from the mean. Therefore, it is reasonable to conclude that
the randomness of the initialized variables has little impact
on the result of the experiments. The experimental results
for objective weights (1, 10) are displayed in Fig. 2 and
Fig. 3. In this case, where the delay objective dominates the
number of vehicles used objective, the RS based matching
algorithm performs significantly better in terms of delay while
performing similarly to the other two algorithms in terms of
the number of vehicles used.

In the second case, where the number of vehicles used
objective has weight 100, the simulation results are displayed

Fig. 4. Objective Weights α = 1, β = 100, Delay Objective

Fig. 5. Objective Weights α = 1, β = 100, Number of Vehicles Used
Objective

in Fig. 4 and Fig. 5. Again, the proposed RS based algorithm
outperforms the other two algorithms by a large margin while
performing similarly in terms of the other objective.

Another simulation is performed where the vehicle to task
ratio is 1:5 to replicate an extremely busy environment where
most vehicles need to be used. Fig. 6 displays the results of
this simulation. We can see that, on average, the proposed RS
based algorithm performs slightly better than the two baseline
algorithms. In this type of setting, where most available
vehicles need to be used, assigning the right tasks to the
right vehicles becomes increasingly important. Therefore, the
RS based algorithm’s performance in the number of vehicles
used objective is slightly better than the other two baseline
algorithms while still performing significantly better in the
delay objective.

V. CONCLUSION

This paper proposes a formulation of the task assignment
problem in the PVC environment as a weighted multi-objective
optimization problem that aims to minimize both task delay
and wireless channel load. Then, a heuristic based on the RS
algorithm is proposed and evaluated against two other baseline
algorithms on various simulation settings on a scale of up to
500 vehicles and 1,500 tasks.

The formulation of the optimization problem is a key area.
Currently, only the total task completion speed is measured in



Fig. 6. Objective Weights α = 1, β = 10, Both Objectives

terms of delay as it is the simplest measure of delay. However,
practically speaking, there may be deadlines imposed on
certain tasks. Then, a deadline constraint would have to be
added. We could also incorporate deadlines and ignore how
fast the tasks are done as long as they are done before their
deadline. Furthermore, the transmission delay is part of the
total delay objective in the formulation. However, that is
related to the state of the wireless channels, which is related
to the number of vehicles in use. So, perhaps the objective
function could have the transmission delay be dependent on
the number of vehicles used.

Secondly, only a general formulation of an incentive mech-
anism is proposed in this paper. Future work could include
a formal formulation of such a mechanism and evaluating
the ability of the incentive mechanism to provide accurate
remaining parking time estimates through various simulations.
This should then be compared against the effectiveness of
remaining parking time estimation via statistical modeling.
Another extension would be designing a hybrid solution using
both statistical analysis and incentivized user submissions.
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